
DTIC FILE COpy

NAVAL POSTGRADUATE SCHOOL
. Monterey, California

Lf
0

(0 V' STATES 4

THESIS

NEURAL NETWORKS APPLIED
TO SIGNAL PROCESSING

by

Mark D. Baehre

September 1989

Thesis Advisor: Murali Tummala

Approved for public release; distribution is unlimited

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMBNo.0704.0188

la. REPORf SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIICATIONDOWNGRADING SCHEDULE distribution is unlimited

4. PERFORMING ORGANI.ATIONj REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONNaval Postgraduate (If applicable) Naval Postgraduate SchoolNaa otrdaeSchooll 62__________________

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, California 93943w5000 Monterey, California 93943-5000

8a. NAME OF FUNDING/SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO.

11. TITLE (Include Security Classification)

NEURAL NETWORKS APPLIED TO SIGNAL PROCESSING

12. PERSONAL AUTHOR(S)
BAEHRE, Mark D.

13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Engineer's Thesis FROM TOI 1989 September 1 107

16 SUPPLEMENTARY NOTATIONThe views expressed in this thesis are those of the
author and do not reflect the official policy or position of the Depart-
ment of Defense or the U.S. Government.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Neural network, backpropagation, conjugato grad-

ient method, Fibonacci line search, nonlinear
signal processin.-cDkaa el eaualization

'19 ABSTRACT (Continue on reverse if necessary and identify by block number ;- '&o.\ _CO CX! k.IQ01A *er r .cK,

he relationship between the structure of a neural network and its ability to perform
nonlinear mapping is analyzed. A new algorithm, clled the conjugate gradient optimiza-
tion method, for calculating the weights and thresholds of a neural network is preE-nted.
The performance of the conjugate gradient algorithm 'is then compared to the well known
backpropagation method and shown to be more computationally efficient. A neural network
using the conjugate gradient algorithm is then applie I to three simple examples to demon-
strate its signal processing capabilities. The first xample illustrates the ability of
the neural network to perform classification. The sec6nd compares the performance of a

* one-step linear predictor to a :.ural netviork for a nonlinear chaotic time series. The
neural network predictor is shown to provide much greater atcuracy than its linear
counterpart. The final application presented demonstrates the ability of a neural net-

4 work to perform channel equalization for a nonminimum pha~e channel. Its performance is
-:hen compared to its linear equivalent. ' _0o L ivO'is
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

I UNCLASSIFIEDUNLIMITED 0 SAME AS RPT C3 DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Incuce Area Code) 22c OFFICE S MBOL

Murali Tummala , 46-2645 , 62T,,
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603 UNCLASSIFIED

i

Approved for public release; distribution is unlimited

Neural Networks Applied to Signal Processing

by

Mark D. Baehre
Captain, United States Army

B.S., United States Military Academy, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
and

ELECTRICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL

September 1989

Author:

Mark D. Baehre

Approv,. by:

urali Tummala, Thesis Advisor

Charles W. Therrien, Second Reader

"'--- ohn P. Powers, Chairman
Department of Electrical and Computer Engineering

Gordon E. Schacher
Dean of Science and Ergineering

ii

ABSTRACT

The relationship between the structure of a neural network and its ability to

perform nonlinear mapping is analyzed. A new algorithm, called the conjugate gradient

optimization method, for calculating the weights and thresholds of a neural network is

presented. The performance of the conjugate gradient algorithm is then compared to the

well known backpropagation method and shown to be more computationally efficient.

A neural network using the conjugate gradient algorithm is then applied to three simple

examples to demonstrate its signal processing capabilities. The first example illustrates

the ability of the neural network to perform classification. The second compares the

performance of a one-step linear predictor to a neural network for a nonlinear chaotic

time series. The neural network predictor is shown to provide much greater accuracy

than its linear counterpart. The final application presented demonstrates the ability of

a neural network to perform channel equalization for a nonmininmum phase channel. Its

performance is then compared to its linear equivalent.

Accession For

NI J'S GRA&I

DIFIC TIB
Uuannounced El

I Justificatior

By

I" Distribution/

IAvailability Code

Avail and/or
1Dist Special

A10_
44

TABLE OF CONTENTS

INTRODUCTION 1

II. FUNDAMENTALS -HOW NEURAL NETWORKS WORK 4

A. THE BASIC BUILDING BLOCK 4

B. THE TRANSFER FUNCTION 5

C. CALCULATION OF WEIGHTS AND THRESHOLDS 14

III. DERIVATION OF THE ADAPTATION ALGORITHM 17

A. THE CONJUGATE GRADIENT METHOD 17

1. General Description 17

2. Notation Summary 19

3. Summary of the Conjugate Gradient Algorithm 19

4. Selection of a Line Search Method 20

5. Calculation of the Deflection Coefficient d3 k 24

B. APPLYING THE CONJUGATE GRADIENT METHOD TO A

NEURAL NETWORK 24

1. The Neural Network Model and Notation 24

2. The Neural Network Objective Function J(h) 26

3. The Adaptation Coefficients h 26

4. The Gradient Vector g 27

a. Neuron Transfer Function Derivative 28

b. Calculation of the Third Lay-r Gradient 29

c. Calculation of the Second Layer Gradients 30

d. Calculation of the First Layer Gradients 31

e. Calculation of the Input Layer Gradient-. 33

i%"

5. Fibonacci Line Search Parameters 35

C. COMPUTER PROGRAM IMPLEMENTATION 38

1. Conjugate Gradient Algorithm 38

2. Backpropagation Algorithm 39

IV. RESULTS 42

A. CONJUGATE GRADIENT ALGORITHM PERFORMANCE . . 42

1. Performance Measures 42

2. Calculation of the Multiplication Ratio 43

3. Performance Results 45

B. NEURAL NETWORK APPLICATION RESULTS 51

1. A Classification Problem 51

2. Nonlinear Time Series Prediction 53

3. Channel Equalization 59

a. Transmission Channel Model and Equalizer model 59

b. A Nonminimum Phase Channel Equalizer 60

c. A Nonminimum Phase Channel Eqaalizer Using a Delay . 62

d. A Performance Comparison 65

e. Channel Equalizer Conclusions 68

V. CONCLUSIONS AND RECOMMENDATIONS 71

A. CONCLUSIONS 71

B. FUTURE RESEARCH 72

1. Transfer Function Selection 72

2. Neural Network Dynamic Range 72

3. Internal Representations 73

4. Analysis of the Weights and Thresholds 73

APPENDIX A: PROGRAM OUTPUT SCREEN AND DATA FILES 74

V

APPENDIX B: PROGRAM SOURCE CODE LISTING 78

LIST OF REFERENCES 93

INITIAL DISTRIBUTION LIST 95

\'i

LIST OF TABLES

4.1 MULTIPLICATIONS - CONJUGATE GRADIENT METHOD ... 44

4.2 MULTIPLICATIONS - BACKPROPAGATION METHOD 44

vii

LIST OF FIGURES

2.1 A single artificial neuron 4

2.2 Signum function 5

2.3 Single neuron and associated 4ecision regions 7

2.4 Two layer network and associated decision regions 7

2.5 Three layer network and associated decision regions 7

2.6 Two layer linear network 10

2.7 Neuron transfer functions 10

2.8 A sigmoid surface11

2.9 A ridge .. 12

2.10 A pseudo-hump 13

2.11 A bump 13

2.12 Multiple bumps 13

3.1 Initial evaluation points A0 and po and interval of uncertainty 23

3.2 Evaluation points A3+, and Pj+1 and revised interval of uncertainty

when J(A,) > J(p) 23

3.3 Evaluation points A,+, and l j+l and revised interval of uncertainty

when J(Aj) < J(pj) 23

3.4 Neural network model 25

3.5 Line profile of the error function surface 37

3.6 Conjugate gradient algorithm flowchart 40

3.7 Backpropagation algorithm flowchart 41

4.1 Binary problem - backpropagation 47

4.2 Binary problem - conjugate gradient 47

Viii

4.3 Binary problem - comparison 48

4.4 Continuous problem - backpropagation 49

4.5 Continuous problem - conjugate gradient 49

4.6 Continuous problem - comparison 50

4.7 Training data for the classification problem 52

4.8 Neural network output versus input 54

4.9 Neural network output contour plot 54

4.10 Time series predictor 55

4.11 Linear predictor output and actual signal 57

4.12 Linear prediction error 67

4.13 Neural network predicted and actual signal 58

4.14 Neural network prediction error 58

4.15 Channel model and equalizer 59

4.16 Possible combinations of y, and yi-1. 63

4.17 Possible combinations of yj and yi-1 with noise added 63

4.18 Linear equalizer decision regions 64

4.19 Neural network decision regions 64

4.20 Possible combinations of yj and Yi-.I (with delay) 66

4.21 Possible combinations of y, and yi-1 with noise added (with delay) . . 66

4.22 Linear equalizer (with delay) decision regions 67

4.23 Neural network (with delay) decision regions 67

4.24 Equalizer performance (no delay) 69

4.25 Equalizer performance (with delay) 69

4.26 Equalizer performance - all :nethods 70

ix

ACKNOWLEDGMENT

The completion of this thesis can be attributed to the inspiration, knowledge, and

support of a countless number of people. I would like to specifically thank Professor

Mu.:ali Tummala, my thesis advisor and Professor Charles W. Therrien, my second

reader, for sharing their expertise, providing encouragement, and demonstrating unfail-

ing patience during the preparation of this thesis.

I dedicate this thesis to my wife, Sheila. Her understanding, support, and love

make everything worthwhile.

X

I. INTRODUCTION

Artificial neural networks have been studied for many years in the hope of

achieving human-like performance. Neural networks consist of highly connected soots

of relatively simple processing elements. Computations are performed collectively by

the entire network with the activity distributed over all the processing elements. This

parallel distributed processing provides neural networks with the potential to solve

complex pioblems more quickly than the currently well known present serial methods.

The nonlinear nature and simple structure of neural networks provide a formalism

for the study of nonlinear signal processing.

The application of neural networks to signal processing involves developing an

understanding of the relationship between the structure of a neural network and its

ability to perform the desired input-to-output mapping. A neural network's structure

is defined by the number and type of processing elements in the network, the values

of the weights that connect the processing elements together, and a threshold value

associated with each processing element. Past work has lead to a large variety of

neural network models. The models include the Hopfield network. the single- and

multi-layer perceptronz networks, the reduced Coulomb energy (RCE) classifier, and

the adaptive resonance theory (ART) model [Ref. l:pp. 65-73]. Each model differs

in its structure and the manner in which the weights and thresholds of the network

are derived. One current method for calculating the weights and thresholds of a

feedforward multilayer neural network, called the backpropagation method, uses a

steepest descent method to iteratively adapt the weights and thresholds of the network

[Ref. 2:p. 127]. This method has generally been shown to be slow to converge to the

optimal set of v.eights and thresholds for a given problem [Ref. 1:1). 300]. The

objectives of this thesis research were therefore:

* Investigate the relationship between the structure of a neural network and its
ability to perform input-output mapping.

* Develop an alternative to the backpropagation method that converges more
quickly to the optimal set of weights and thresholds for any given problem.

* Compare the performance of a neural network to its linear counterpart for some
representative signal processing applications.

Chapter II provides a general overview of the theory of neural networks. A

graphical approach is employed to demonstrate the ability of neural networks to

perform nonlinear mapping for various network configurations. The results are then

related to a theorem by Kolmogorov. The backpropagation method for calculating

the weights and thresholds of the neural network is also introduced.

Chapter III deals with the derivation of an alternative algorithm to the back-

propagation method for calculating the weights and thresholds of a neural network.

The conjugate gradient optimization method is presented and then applied to the neu-

ral network model. The Fibonacci line search method used in conjunction with the

conjugate gradient method is also discussed. The final section of the chapter presents

details concerning actual implementation of the algorithm to include experimentally

derived parameters.

Chapter IV presents the results of the thesis research. The con julgate gradient

algorithm's performance is compared to the backpropagation method and is shown

to be more computationally efficient. A neural network using the conjugate gradi-

ent algorithm is then applied to three simple examples to validate the performance

of the new algorithm and to demonstrate the types of tasks that a neural network

can perform. The first example illustrates the neural network's ahility to perform

classification. A two input neural network is successfully "taught- to diff'Crentiate be-

tween sets of points falling inside ald outside a circle. The secoid exallple compares

the performance of a one-step linear predictor to a neural network for a nonlinear

chaotic time series generated using the Feigenbaum logistic function. This applica-

tion demonstrates the nonlinear mapping ability of the neural network. The neural

network predictor is shown to provide much greater accuracy than its linear counter-

part. The final application presented demonstrates the ability of a neural network to

perform channel equalization for a nonminimum phase channel. Its performance is

compared to its linear equivalent and is shown to provide superior performance.

Chapter V contains the overall conclusions of the thesis research and provides

recommendations for future research.

:3

II. FUNDAMENTALS - HOW NEURAL
NETWORKS WORK

A. THE BASIC BUILDING BLOCK

A neural network is a system of relatively simple processing elements whose

function is determined by its network structure, connection weights, and the transfer

iunction of each neuron. Figure 2.1 shows a single artificial neuron, the fundamental

building block for all neural networks. A set of inputs x1 , x2 ,...,x,, are applied

through a set of associated connection weights w1 , W 2,... , w, to the neuron.

.rl

X2

WI

Figure 2.1: A single artificial neuron

The inputs correspond to the stimulation levels and the weights to the synap-

tic strengths of a biological neuron. The neuron sums the weighted inputs, adds a

threshold value, and applies the result to the neuron's transfer function f(x). This

operation can be expressed as

z =f (_ wx + O) (2.1)

4

or in vector notation

Z f (wTx + (2.2)

where x is a column vector of inputs, w the corresponding column vector of weights,

and 0 the neuron's threshold value.

B. THE TRANSFER FUNCTION

A number of possibilities arise for selection of an appropriate transfer function.

These include most notably: the signum function, the linear function, and the sigmoid

function. Initial research conducted in the 1950's and 1960's by Rosenblat, Minsky

and others used the signum function shown in Figure 2.2 [Ref. 3]. The signum function

will be used for a preliminary discussion of how neural networks operate.

f(x)

x

Figure 2.2: Signum function

Artificial neurons using the signum transfer function were referred to as percep-

trons [Ref. 3]. The signum transfer function causes the output of the perceptron to

take one of two discrete values. The point at which the neuron switches from low to

high or high to low is determined by the input weights and the perceptiron s thresh-

old value. It has been shown that a single perceptron has the ability to distinguish

between two classes of inputs [Ref. 4:p. 13]. This is demonstrated in Figure 2.3 for a

two input network.

.5

The combination of weights (w, and w2) and the offset (0) define a line wherc the

output of the network (z) is high for the class of inputs falling on one side of the line

and low for the second class of inputs falling on the other side. If there are n inputs

to a single perceptron, as pictured in Figure 2.1, the perceptron can construct an n

dimensional hyperplane separating the two classes of inputs. Input classes that cannot

be separated by a simple hyperplane therefore cannot be accurately differentiated by

a single perceptron.

This problem can be remedied by cascading the perceptrons into several layers.

This type of network topology is called a feedforward network because the output

from the previous layer is fed forward to only the neurons in the next layer of the

network. By adding additional layers, more complex boundaries can be defined. A

two layer network is capable of defining decision regions that are convex or concave

in shape. For the two input case shown in Figure 2.4, each perceptron in the first

layer defines a boundary line. A single second layer perceptron weights and combines

the outputs from the first layer perceptrons to produce the tw, decision regions. As

pictured in Figure 2.4 a two layer network call also define a single enclosed region.

With the additioh of a third layer, disjoint enclosed regions can be combined to create

a decision map of any arbitrary complexity, given a sufficient number of perceptrons

in each layer. This is illustrated in Figure 2.5.

The performance of a multilayer perceptron network using the signum transfer

function is satisfactory provided the desired output from the network is limited to two

discrete values (i.e., high or low). This would be appropriate for a binary classifier

system, where each output would represent one of two classes, i.e., a binary value.

It does not, however, provide sufficient resolution for analog (continuously valued) or

the corresponding discrete valued output functions associated with most other signal

processing applications.

6

X2
1

W1 Region 0 (z =0)

r. > W2 (Decision Boundary

X2 Region 1 (z =1)

Figure 2.3: Single neuron and associated decision regions

Region 0

_____ Decision Bouandary

X2 Region I Riegion 0

Figure 2.4: Two layer network and associated decision regions

Decision Boundaries

Figure 2.5: Three layer network and associated decision regions

One example of a transfer function that would be capable of pioviding such a

continuously variable output is the linear transfer function. In this case, the output of

the artificial neuron ,rould simply be the weighted sum of the in-, 1 ts plus the neuron's

threshold value. This car be expressed as

Z = f(x) = jWixi + 0 (2.3)

or in vector notation

z = f(x) = w 7 x + 0. (2.4)

This is the transfer function used by Widrow and Hoff in their development of the

adaptive linear (adaline) and multiple adaptive linear (madaline) filters [Ref. 5:1).

10]. A great deal has been written concerning research and applications of the

adaptive linear filter although it has not often been referred to as a neural model

[Ref. 6],[Ref. 7],[Ref. 8]. One key feature of the linear neural network is that there is

no functional difference between a multilayer and a single layer network. For example,

for the simple two layer network in Figure 2.6 the output of the first layer neurons

can be written as

fl(XI, X2) = wIXI + w2X2 + 01 (2.5)

and

f2x(. X2) = Zw3XI + w4 X2 + 02. (2.6)

The output of the network can then be written as

f3(X, X2) = wsfl(XI, X2) + w6f 2(2:, x 2) + 03. (2.7)

After some algebraic manipulation and substitution, the final result 's

f 3(X1 .X2) = wIu 1 + w3)X + wI6(1 2 + w4)x2 + (w501 + W,0 2 + 03). (2.8)

8

From the above discussion, it is clear that, regardless of the number of layers in the

network, the network can always be reduced to a single layer netv.ork. Essentially

then, the linear adaptive filter is nothing more than the linear version of a single layer

neural network.

A third transfer function which has been recently popularized by Rumelhart et

al. [Ref. 9] is called the sigmoid function. It is defined by the equation

f(Z) + (2.9)

where

= wixi + 0 = w T x + 0. (2.10)

The sigmoid function, pictured in Figure 2.7, has a shape which would appear to fall

somewhere between the linear transfer function and the signum transfer function.

Its output is limited to a continuous range of values between zero and one. For values

of z near zero. the transfer function behaves in a linear fashion with a constant slope

of one. If the input weights to the neuron are kept sufficiently small and the range

of input values limited, the sigmoidal artificial neuron can be made to appear linear.

Likewise, by using large values fur the input weights w, the values for z would vary

more rapidly and the siginoidal artificial neuron would more closely approximate the

signum function. As a result, the output of the network can be made to approximate

both linear and nonlinear combinations of the inputs depending on) the values of the

network's weights (w) and thresholds (0).

A theorei:n developed by Kolmogorov and described in Reference 10 provides

further insight into 4 he potential capabilities of a multilayer sigmoidal neural network.

The theorem states that any continuous function of n variables can be represented

using only linear summatio. s and nonlinear but continuously increasing functions of

only one variable. This would indicate that a three layer artificial neuron feedforward

9

10f

network using a sigmoidal transfer function is capable of representing any nionlin-

ear multivariable function. The theorem, however, does not indicate the numb,1r of

neurons required in each layer, or how the values for the weights should be derived.

It has been suggested that one approach to representing an n-.;mensional non-

linear function using neural networks might be by a weighted cc.nbination of ?I-

dimensional 'bumps' [Ref. 11]. This is somewhat analogous to the Fourier series

representation of an arbitrary signal where weighted combinations of sinusoids of

suitable frequencies are used. To see how a nonlinear function might be represetcd

using a sigmoidal neural network, let us look at the case where we have a nonlin~ear

function of two variables. The output of the nonlinear function could be interpreted

as a two dimensional surface in a three dimensional space. The output of a single

sigmoidal neuron would have a surface like that pictured in Figure 2.8.

1.0

0.6

0.2 !

0.0

0.1

Figure 2.8: A sigmoid surface

The orientation of the rising slope of the sigmoidal surface is deterniued by the

neuron's input weights (w). Its position is determined by its threshold (0) value.

The height of the sui[ice *s controlled by the weight connected to the out put of' th

11

neuron. If we add a second neuron with the same orientation, but a slightly different

position than the first by using a different threshold value (0), and use all output

weight equal to but opposite in sign of the first, we can form a ridge as shown in

Figure 2.9.

.0.4 0

-t

Figure 2.9: A ridge

A second ridge, perpendicular to the first, call then be constructed by adding

two additional neurons to the first layer and selecting appropriate input weight values.

The sum of the two ridges then forms the surface pictured in Figure 2.10. The weights

connecting the outputs of the first layer neurons to the single second layer neuron

along with the second layer neuron's threshold value can then be adjusted to yield a

true bump shown in Figure 2.11.

We can now represent any surface as a combination of these bumps. The network

topology to accomplish this would consist of multiple copies of two layer network and

a single third layer neuron to weight and sum the bumps. The resulting surface is

pictured in Figure 2.12. The preceding development provides some insight into the

number of neurons required in each layer of a neural network to adequately represent 1

12

0.8

0.8

N 0.4

Figure 2.10: A pseudo-bump

0.40.2 .0. 1.
Figure 2.11: A bump

0.2

0.4

S0.2

00, .,..V

Figure 2.12: Multiple bumps

a given nonlinear function. A given function might be more efficiently represented

using a combination of sigmoidal surfaces or ridges rather than bumps. The better

knowledge ane has of the function to be represented will lead to a better decision.

concerning the neural network topology required.

C. CALCULATION OF WEIGHTS AND THRESHOLDS

The burning question that has yet to be addressed concerning the feedforward

sigmoidal neural network is how do we calculate the weights (w) and the neuron

thresholds (0) of the network to yield a satisfactory representation of a gi-.en nonlinear

function. A method called backpropagation, developed by Runielhart, has proven

popular and has been demonstrated to work fairly well [Ref. 21. The backpropagation

method uses a training data set consisting of sets of inputs and a desired output value.

A set of inputs is applied to the neural network and the resulting network output is

compared to the desired value. The error between the neural network's output and

the desired output, along with the current state of neural network, is used to modify

the neural network's weights and threshold values. The state of the neural network is

defined by the current input to the network, its weights, thresholds, and each neuron's

transfer function. The backpropagation method attempts to minimize the sum of the

squared errors over the entire training data set. This can be expressed as

E = (2.11)
i t

where E is the total squared error, e(t) is the network output error for the t 1 input

set, y(t) is the desired or target output for the tth input set, and z(t) is the actual

output of the neural net for the tth input set. The weights and the thresholds of the

network are iteratively updated in proportion to the gradielit of the total squared

14

error, E. This can be expressed as

w(n + 1) = w(n) + Zw(n) = w(n) - 6w 6)(2.12)

and
eSE

0(n + 1) = 0(n) + AO(n)= 0(n)- n • (2.13)

where w(n) and 0(n) are thie weights and thresholds at the n"h iteration of the algo-

rithm, Aw(n) and AO(n) are the incremental changes to the weights and thresholds,

and E is the proportionality constant [Ref. 2:p. 130]. The backpropagation method

gets its name from the fact that the error at the output of the network is propagated

back through the network in the form of gradients in order to update the network's

weights and thresholds.

The backpropagation method is essentially a steepest descent optimization al-

gorithm which uses the gradient of the squared error function to modify the weights

and thresholds of the neural network [Ref. 2:p. 127]. One requirement dictated by

this gradient method is that the transfer function of the neurons be continuously dif-

ferentiable [Ref. 2:1). 131]. As a result, this method cannot be used with the signum

transfer function because of its discontinuity. The method, however, does work for

the linear and sigmoidal transfer function cases.

As presented above, the weights and thresholds are updated after a complete

pass of the entire training data set through the network. In the actual implemen-

tation of the algorithm, however, Rumelhart updates the weights ancl thresholds of

the network after each input/desired output pair is applied [Ref. 2:pp. 136-137].

His rationale for doing this is that the algorithm convergets so slowly that it does

not affect the overall convergence rate, and that it is more gratifying to update the

weights and thresholds more frequently [Ref. 2 :p. 137]. As Rummelhart indicated.

the steepest desc:ent method is extremely slow to converge. Jt was this deficiency that

15

led to the development of this thesis project. Lapedes and Farber indicated that a

related optimization method, the conjugate gradient algorithm, yielded a significant

improvement in the convergence rate of the backpropagation method [Ref. 12]. The

following chapter will address the development and application of this optimization

method to a feedforward sigmoidal neural network.

16

III. DERIVATION OF THE ADAPTATION
ALGORITHM

A. THE CONJUGATE GRADIENT METHOD

1. General Description

The conjugate gradient method is an iterative method for optimizing a

set of coefficients h in order to minimize a given objective function J(h). It falls

into the class of optimization methods that apply a multidimensional search using

derivatives to the optimization problem [Ref. 13:pp. 289-316]. The steepest descent

method, which Rumelhart uses for adapting the feedforward neural network, is also

a member of this class [Ref. 2]. This class of optimization methods, called gradient

methods, treat the objective function J(h) as a multidimensional surface over which

it iteratively searches for the absolute or global minimum [Ref. 13:1)1). 289-316]., The

coefficients h are the multidimensional coordinates which define where the algorithm

is located on the surface during any particular iteration. This class of optimization

methods require that the objective function be differentiable with respect to the

coefficients h that are adapted [Ref. 13:1). 289]. This partial derivative is called the

gradient g of the objective function. When evaluated for a given set of coefficients h,

the gradient g is a multidimensional vector which is tangent to the objecti'e function

surface at a point defined by the coefficients h. This vector points in the direction of

greatest increase. The negative of the gradient (-g) logically points downhill in the

direction of ,reat st decrease. Thus, the gradient vector g can provide a direction

along the scrface of the objective function in which to search for the global minimum.

The advantage of gradient methods is that they decompose the optinization problem

from a multidimensional search of the objective function surface to a .equence of line

17

searches along directions determined by the gradient vector g.

The method of steepest descent uses the gradient vector g directly to per-

form its iterative line search of the objective function surface [Ref. 14:pp. 214-220].

Rumelhart points out that the steepest descent method works well when the objective

function surface is quadratic or bowl-shaped with a single global minimum [Ref. 2:p.

132]. He states, however, that the more complex objective function surfaces associ-

ated with multilayer neural networks frequently contain many local minima [Ref. 2:p.

132]. As a result, the steepest descent method can- become trapped in one of these

local minima yielding a less than optimal solution. This is because the magnitude of

gradient vector decreases as the algorithm approaches a local minimum. The distance

the steepest descent algorithm travels for a given iteration is a function of a constant

times the magnitude of the gradient. Therefore, as the magnitude of the gradient de-

creases, the distance the algorithm travels along the surface decreases. Compounding

the problem is the fact that each successive gradient is orthogonal to the previous

gradient. This causes the algorithm to zigzag in ever smaller steps as it approaches

the bottom of a local minimum. The result is that the algorithin becomes trapped

at the bottom 6f a local minimum and never reaches the optimal point or global

minimum. Use of a constant stepsize also causes the steepest descent algorithm to be

extremely slow to converge [Ref. 13:pp. 290-291].

The conjugate gradient approach is motivated by a desire to accelerate

the convergence rate bf the steepest descent method without greatly increasing the

complexity of the algorithm. The conjugate gradient method uses a succession of

direction vectors d. that are conjugate to the gradient vector g. obtailied as the

algorithm progresses. The direction along which the algorithim searches. d., is a

linear combination of present and past values of the gradient vector. The result is

that the gradient vector gk is orthogonal to the subspace rk which is defined by

18

77

the set of all previous direction vectors do, dl,... ,dk-1. Each successive iteration

essentially adds an additional dimension to the subspace lk. The distance 0 k that

the algorithm travels along the line search direction dk also varies ftr each iteration

of the algorithm. This makes the method only slightly more complicated than the

steepest descent method. The algorithm, however, does not become trapped in local

minima as easily as the steepest descent method and converges steadily to the global

minimum or optimal set of coefficients hk [Ref. 13:pp. 297-316].

2. Notation Summary

The notation used to describe the conjugate gradient method is as follows:

J(h) Objective function to be minimized.

hk Coefficient vector at the kt ' iteration.

gk Gradient vector of the objective function at the k'" iteration.

dk Search directi .n vector at tile kt h' iteration.

ak Search distance coefficient at the kth iteration.

P3k Deflection coefficient at the kth iteration.

3. Surr ..ary of the Conjugate Gradient Algorithm

A summary of the conjugate gradient method tbr immiinizing a difleren-

tiable objective function J(h) is listed below [Ref. 13:p. 306]:

Step 1. Choose an initial set of coefficients h0 .

Step 2. Calculate the initial gra.dient go nsing the definition

d.J(h 0)
go = . (3.1))ho

19

Step 3. Let the initial direction vector be do = -go.

Step 4. Let k=0.

Step 5. Let ak be the optimal solution to the problem to minimize J(hk +

akdk) subject to aCk > 0.

Step 6. Update the new coefficients hk+l using the equation

hk+1 = hk + akdk. (3.2)

Step 7. Calculate the next gradient vector value gk+l using the new coeffi-

cients hk+I.

Step 8. Calculate the deflection coefficient #k using the equation

= (gk+1 - gk)Tgk+1 (3.3)gk 'gk(.)

Step 9. Update the direction vector dk+i using the equation

dk+l = -gk+l + #kdk. (3.4)

Step 10. Replace k by k + 1 and go to step 5.

4. Selection of a Line Search Method

The conjugate gradient method outlined above requires that a search dis-

tance coefficient a'k be found thaL minimizes the objective function J(hk + akdk)

subject to ak > 0. This dictates that a line search be performed starting at the point

in multidimensional space defined by the current coefficient vector Ilk and proceeding

along the line dfdined by the current direction vector dk until the inii1u11 'aluC of

the objective function is found. The distance the line search algoritlim travels from

20

the point hk to the minimum value of the function is then defined to be the scalar

value ak. A number of methods have been proposed to perform this line search.

These include the uniform search, dichotomous search, the golden section method,

and the Fibonacci method [Ref. 13:pp. 253-264]. There is also a class of line search

methods which use derivatives to assist in finding the minimum value of the objective

function [Ref. 13 :pp. 264-269). This second group of methods was considered for

use with the conjugate gradient method but were subsequently rejected due to the

complexity of calculating and evaluating the required derivatives. The selection of

an appropriate line search method for use in conjunction with the conjugate gradient

method was based primarily on efficiency. All of the methods except for the Fibonacci

search require two evaluations of the objective function during each iteration of the

algorithm. The Fibonacci method, however, requires only a single evaluation because

it also uses the results from the previous iteration. Comparison of the line search

methods mentioned above revealed that the Fibonacci search method is the most

efficient [Ref. 13:p. 264]. As a result, the Fibonacci search method was chosen to be

used in conjunction with the conjugate gradient method.

The Fibonacci method performs a search for the minimum value of a func-

tion of a single variable over a closed bounded interval [a, b]. The function in this

case is J(hk + akjdk) where ak is the single variable. The interval over which the

algorithm searches is called the interval of uncertainty and limits the range of values

for aki. The lower limit for aj is given by the conjugate gradient method as zero,

but the upper limit must be specified before the algorithm can begin. The interval of

uncertainty is steadily reduced as the algorithm progresses. The number of iterations

which the algorithm will perform must also be specified before the start of the algo-

rithm. The Fibonacci method is based on the Fibonacci sequence F, which is defined

21

as

F,,+, -F. + F.-, (3.5)

Fo F, = 1 l (3.6)

The resulting sequence is 1,1,2,3,5, 8,13,21, 34, 55,89,.... The Fibonacci search

method begins by evaluating the objective function at each of two points within the

interval of uncertainty as shown in figure 3.1.

These two points, which we will call Aj and pi, are calculated using

Ai=a,+ (bj -aj) (3.7)

and
" = a3 + (bj -aj) (3.8)

where k is the iteration index of the conjugate gradient algorithm, j is the iteration

index of the Fibonacci algorithm, [a,, b3] is the current interval of uncertainty, and n

is the total number of iterations planned. A new interval of uncertainty [a3+i, b)+u]

is then selected based on the value of the objective function at the two points A, and

il. If J(hk + Ajdk) > J(hk + pjdk), then the new interval of uncertainty [a,+1, b+ II

is given by [Aj, bj]. Likewise, if the opposite is true, J(hk + Ajdk) < J(hk + Pjdk),

then the new interval of uncertainty is [aj, pj. Both cases are shown in Figure 3.2.

The key feature that makes the Fibonacci method so attractive is that. for the next

iteration j + 1, either A3+ = li. or pJ+1 = Aj, depending on which new interval of

uncertainty was selected. Since the objective function has already been evaluated at

the previous values for Aj and p,, then only one additional evaluation must be made

for each succeeding iteration. At the completion of the specified n iterations of the

algorithm, the size of the final interval of uncertainty will be

(b,, - a,,) - (bo-(o) (3.9)

9.)

a O 11 I

a0 Ao b0

Figure 3.1: IntaEvaluation points ~ and p anrvd interval o uncer-t

*aj Aj jb
aj~i j~j P+1 b+ 1

Figure 3.2: Evaluation points Aj+ 1 and pij+ and revised interval of~ uncer-
tainty when J(A1) < J(It1)

I I 23

If we select the midpoint of the final interval of uncertainty as the value ack to be used

by the conjugate gradient method, then we can calculate the number of iterations n

required to achieve a desired accuracy after deciding upon an upper bound bo. The

upper bound and number of iterations used for the neural network problem will be

presented in the next chapter.

5. Calculation of the Deflection Coefficient Pk

The equation used to calculate the deflection constant /& (equation 3.3)

is the Polak-Ribiere version of the conjugate gradient method originally proposed by

Fletcher and Reeves [Ref. 14:p. 253]. The original method used the equation

gk+lgk+l (3.10)
gk gk

to calculate the deflection constant Ok. The two equations are equivalent if the ob-

jective function to be minimized is quadratic. Experimental results, however, tend

to indicate that the Polak-Ribiere method is more effective for nonquadratic objec-

tive functions [Ref. 14:1). 254]. This is because the Polak-Ribiere method tends to

reset the the direction vector dk4 i to the value of the gradient vector g+1 when

two successive gradients gk and gk+l are equal. This has the effect of beginning the

conjugate gradient metiod anew, using the present coefficients vector hk as the new

initial coefficient vector h0 .

B. APPLYING THE CONJUGATE GRADIENT METHOD TO A NEU-

RAL NETWORK

1. The Neural Network Model and Notation

The generic neural network model to be used for the purposes of discussion

is pictured in Figure 3.4. The notation used when referring to the various variables

of the model is as follows:

24

001 Oil W2j]

X02 f(/ r TI f(X22-f. X3-IV

002 012 02

X01. * 2n

00,11 0111

Figure 3.4: Neural network model

2.5

xij The jth input to the i/h layer of the network. For other than the inputs
X0 1 , Xo2 ,... ,xo, the variable xij is also the output of the Jth neuron in the
(i - I)th layer and is a function of the previous layer's inputs and weights and
the Jth neuron's threshold value.

wipk The weight in the ith layer of the network that connects the jth input xij to the
kth neuron of the layer.

0ik The threshold value associated with the kth neuron of the ith layer of neurons.

y The desired output value of the network for a given set of inputs x 01, x 02,. ., XoI.

f(.) The transfer function of the neuron.

2. The Neural Network Objective Function J(h)

As was mentioned in the previous chapter, we wish to minimize the total

sum of the squared errors over an entire training data set. As a result, the objective

function J(h) to be mininized using the conjugate gradient method is

E= E 1e2(t) (3.11)
t2

where e(t) is the error between the actual and the desired outputs of the neural

network for the jth data set.

3. The Adaptation Coefficients h

There are two quantities that we wish to adapt in order for the neural

network to consistently produce the desired output for a given input. These two

quantities are the connection weights w,k of the network and the threshold values 0,k

associated with each neuron in the network. Together, these two sets of coefficients

form the coefficient vector h. The conjugate gradient algorithm uses a single vector

h to represent the coefficients which are adapted to minimize the objective fuinction

J(h). The notation used for the neural network model, however, reflects the use of

matrices [wik] for the weights and vectors [0
3 k] for the thresholds. This was done to

simplify the identification of the various weights and thresholds. We must therefore

26

combine and transform the weight matrices and threshold vectors into a single vector

h in order to apply the conjugate gradient algorithm. This is done by assigning the

individual weights and thresholds to a vector as shown in equation 3.12.

h = [wo, W o12, • •. wolms, W11,... w3, 001, 002, • . 0 2]T (3.12)

We can perform the conjugate gradient algorithm using the vector notation and then

perform a reverse transformation at the completion of the algorithm to assign the

final weights and threshold values to the neural network.

4. The Gradient Vector g

The gradient vector g used by the conjugate gradient method is defined as

d (3.13)
g = T-jJ(h). (.3

The gradient vector g for the neural network problem consists of the gradients asso-

ciated with the weights and thresholds of the neural network. The gradient vector g

would be of the form

g = [g011,,g 12 9o11.9111, ... ,g3,go,01 go.02 ... 190 I7' (3.14)

The gradient for any particular weight or threshold of the network is calculated by

taking the partial derivative of the error function E with respect to the particular

weight (wiik) or threshold (Oik). For the gradient associated with a weight this would

be expressed as

iik- dE -1 2 0 2j) (3.15)
tdt,,k 2 OiV

and for the gradient associated with a thresbold as

OE 1 0 [--,2(t)16

gijk Oik - 200,k e (3.16)

27

The partial derivative in equations 3.15 and 3.16 can be moved inside the respective

summation terms resulting in the following expressions
.k l k e2(t) (3.17)

g Wij W 2=

and OE 1 0 2 (t)(
gijk = - = - ((3.18)

2 tk 2 Oike

The gradient for each weight wijk can therefore be expressed as the sum of the partial

gradients

9ijk - Z9iJk(t) (3.19)

where the partial gradient g,',k(t) is the gradient associated with the weight wijk when

evaluated for a single set of training data rather than the entire training data set. The

gradients associated with the threshold values of the neural network can be expressed

in a Similar manner, given by

ge = Eg'(i). (3.20)
t

For the purposes of notational brevity, we will assume that the training data set

consists of only one set inputs and the associated desired output. This will allow

us reduce the length of equations for the gradient by removing references to the

particular element of the training set used. The reader should releml)er, however,

that if there are s pairs of data in the training set, then the gradient is the sum of

the s partial gradients as expressed in equation 3.19 and equation 3.20.

a. Neuron Transfer Function Derivative

Before delving into the derivation of the equations for the gradients

of the weights and thresholds of the neural network. a few comments slould be made

concerning the transfer function used for the neural network model and its derivative.

The transfer function to be used is the sigmoid function defined by equation 2.9

28

in Chapter 2. A key feature of the sigmoidal function is that its derivative can be

expressed in terms of its original value by

19X-0 f(x) =-f(x) (1- f(x)). (3.21)

The derivative of a neuron's output can thus be expressed as a function of the output

of the neuron and the partial derivative of the neuron's inputs. The partial derivative

of the neuron's output with respect to wijk is then given by

0i+1ik) 0a'iW k = (-Xi+1,k)(1 - T Ik)'a -i 1: Wj j (3.22)

and

09Oik = (-Xi+l.k)(1 - ai+,k) (. Oik - Wt' (3.23)

for the derivative with respect to O,k. Equations 3.22 and 3.23 will be used frequently

to evaluate the partial derivatives of each neuron's output when deriving the equations

for the gradients of the neural network.

b. Calculation of the Third Layer Gradient

The calculation of the gradients for each weight and threshold of the

neural network begins at the output of the neural network where the difference be-

tween the actual network output and the desired Out)ut produces an error. This

error is propagated back through the network in the form of gradients. The gradient

associated with the output weight W3 can be expressed as

. 3 =_ 9 e2 = a 1 (Y - W3X3) 2 (3.24)
'9W3 9W3 2 'w2 (~ 3

where w3 x 3 is the output of the network and y is the desired output value. Taking

the partial derivative yields

0
93 = (Y - w3x3) a (y - w3x3) = (y - w3X3) (-x 3) • (3.25)

29

After rearranging the terms of equation 3.25, the final form for the output weight's

gradient g3 becomes

g3 = (W 3 X 3 - Y) X3 . (3.26)

c. Calculation of the Second Layer Gradients

Derivation of the input, first and second layer gradients is somewhat

more involved than that of the third layer gradients because of the multiple neurons

and weights between the error at the output and the gradient for which we are deriving

an expression. The gradient equation for a weight in the second layer can be expressed

as
dE 0(y wx).(.7

921 = - = (y - w 3 x 3) (Y - W3X3). (3.27)

Of the terms evaluated by the partial derivative, only the output of the third layer

neuron X3 is affected by a variation of the second layer weight w23. The desired output

y can be eliminated and the partial derivative shifted to the right of tie out put weight

term w3. This yields the expression

92i = (Y - W3 -13) (-3) a (x 3). (3.28)

We can replace the partial derivative term in equation 3.28 with an equivalent ex-

pression that can be evaluated with respect to w2j using equation 3.22. This results

in the following expression

2 = (Y - w 3x 3) (-x 3) (-W 3) (1- X3) -"02- .2pa'2p (3.29)
0 W2j (2 P 2)

93

Comparing the first part of equation 3.29 with equation 3.26, we find that we can

replace the first two terms of equation 3.29 with the output weight's gradient g3.

After taking the partial derivative, only one tern), x2,., remains. The equation for the

second layer weight gradient becomes

92, = 93 (-W 3)(- ':3) (-,'j) = 9311'3 (1 - ,-). (3.30)

30

We can see from equation 3.30 that the gradient 92i is a function of weight w3 that

connects the neuron's output to the next layer, the gradient g3 that is associated with

the output weight, the neuron's output value x3, and the input x2. that is applied to

the weight for which we are calculating the gradient (92,). This relationship between

the inputs, outputs, weights and gradients will be found to be consistent for each of

the gradients of the neural network.

Rather than starting from scratch to derive the equation for the gra-

dient associated with the output neuron's threshold 02, we begin at the point where

evaluation of the Partial derivative with respect to 02 differs from that for the weight

gradient g2,. The equation for the gradient of the output neuron's threshold becomes

902 =93 W3)(-X 3)- (02 -EW2pX2p) (3.31)

Evaluation of the partial derivative yields a constant of one since none of the sun-

mation terms is a function of the threshold value 02. Shifting the sign tern. the final

form for the gradient is

ge. = --g:w 3 (1 - X3) (3.32)

Note that the equation for the gradient of the neuron's threshold value 02 (equation

3.32) has the same forni as that for the input weights 112, coIIIectcd to he Ottpl t

neuron (equation 3.29) except for the input tern x23. \We can treat the threshold

value as a weight if we assume that the threshold 'weight' has a constant input of -1.

d. Calculation of the First Layer Gradients

The derivation of the equation for the gradient of the first layer weights

follows in a similar fashion to that of the second layer. We begin at the point where

evaluation of the partial derivative diffcrs (equation 3.29). The equation. for the first

31

layer weight gradient becomes

91j 9E ((-W 3) (1- X3)02 w2pXp) (3.33)
I -Wk 3Wlk P

Only the output of the kth neuron in the second layer (X2k) is affected by the value of

the weight W1jk of the first layer. Therefore all terms except for the kth term of the

summation in equation 3.33 are zero when the partial derivative is taken. This yields

the expression
a

glik = -g 3w 3 (1 - x3) (-W 2k) "X2k. (3.34)

Using equation 3.22 we can rewrite equation 3.34 as

glijk =-g 3w 3 (1 - x 3) (-x2k) (-w2k) (2k) 0 (0 1k- ZtV.qk X q (335)",, OWlj k q

92L,

The first part of equation 3.35 can be replaced with the gradient g-k using equation

3.30. Only the jh term of the summation under evaluation by the partial derivative

with respect to Wljk is nonzero. The equation for the first layer gradients of the

weights then becomes

9ljk = 92k (-W2k) (1 - X2k) (-a'j) (3.36)

which when rearranged yields

gJlik = g2kw2k (1 - X2k) x1 j. (3.37)

Again, the present layers's gradient is a function of the next layer's gradielits and

weights, the present layer's neuron output values, and the input to the present layer.

The derivation of the equation for the gradient associated with the

neuron thresholds of the first layer follows in the same manner as that of the second

layer. The equation for the threshold gradients 01k of the first layer can be expressed

as

91k 92k 1'20 (1 - -2k)- I .rqk . (3.38)

32

Evaluating the partial derivative results in the final equation

90,k = -92kW2k (1 - X2k) (3.39)

which has the same form as equation 3.32.

e. Calculation of the Input Layer Gradients

Derivation of the input layer's gradient equation differs only slightly

from the previous development. The difference is due to the fact that a variation in

the value of a weight in the input layer affects the output of more than a single neuron

in the next layer of the network. This means that we must retain a summation term

throughout the calculation of the first layer's gradient equation. The gradient for the

first layer weight can be expressed as

9 0jk= E =g3 (-w3) (1 - x 3) OWoj- 2 (3.40)gk-OWojk ok P

The threshold 02 is not a function of the input layer's weights and is eliminated when

its partial derivative is taken with respect to the input weight wojk. The other terms

under evaluation by the partial derivative (i.e., Xa,,) are all, however, a function of

the input weight wojk. The partial derivative can be moved inside the summation

resulting in

gojk = g3w 3 (1 - X3) 2 t X21. (3.411)P w Wojk x

Shifting the summation to the far left and evaluating the partial derivative using

equation 3.22 yields

gojk = 1Zg w3 (1 - x3) W2p (- X 2p) (1 - x 2,) (1oip -"--qk- (3.42)
p q

The 01P term in equation 3.42 can be eliminated since it is not a function of Wolk.

The remaining terms can then be rearranged to produce

gj.= gw 3 (-1' 3)(x 2 ,) w 2, (l - .r.p) ZWo qk----. (:3.43)
P dZVojk

921

33

The value g2p can be substituted for the first part of equation 3.43 using equation

3.30. Also, the output of the kth neuron of the input layer, Xlk, is a function of the

input weight wojk. As a result, evaluating the partial derivative using equation 3.22

results in the equation

=k 2pW2p (1-X 2p) Wlkp (-Xik) (1i) (00k - WOrkXOr) (3.44)
=W(k \ r/

Evaluating the partial derivative in equation 3.44 with respect to Wojk we find that

only the jt term of the summation is nonzero. Rearranging the terms yields

gojk = Eg2pW2p (1 - X2p) x,:, WIkp (1 - Xlk) XOj. (3.45)
P 9kp

Finally, we can replace the first four terms of equation 3.45 with the value g1kp using

equation 3.37. This results in t'Vie equation for the gradients of the weights of the

input layer of the network

Yo, -- (,glkpWlkp) (1 - Xlk) XOj. (3.46)
(P

Using the same reasoning used to derive equations 3.32 and 3.39 we can express the

equation for the gradient of the input layer neuron thresholds as

Ook = (-glpwlkp) (1 - Xlk). (3.47)

Derivation of the equations for the gradients associated with the weight. and thresh-

olds of the neural network is now complete. What we have found is that the gradients

for any particular layer of the network can be expressed as a function of the given

layer's weights, thresholds, inputs, outputs, and the following layer's gradients. It is

not necessary to begin at the output of the network and use the network output error

e(t) to calculate the gradient for a particular weight or threshold which.is several lay-

ers back in the network. The above expressions for the gradient do. however, dictate

that the gradient calculations begin at the output of the network and the gradients

be propagat,!d back through the network.

:34

5. Fibonacci Line Search Parameters

Several parameters associated with the Fibonacci line search methods must

be specified before the conjugate gradient algorithm described in this chapter cali be'

applied. These parameters are:

9 The initial size of the interval of uncertainty

* The number of iterations that the line search should perform.

The Fibonacci line search attempts to find the best stepsize (ak) in which to step

along the error function surface towards the global minimum in a direction defined

by the direction vector (dk). The initial interval of uncertainty is the interval over

which the algorithm will search for the optimal stepsize (0k). The initial interval,

therefore, establishes the minimum and maximum stepsize values. Our goal is to find

the optimal set of weights and thresholds by moving steadily down the error function

surface towards the global minimum. The lower bound of the interval, or minimum

stepsize value, is therefore zero since a negative value would move the algorithn up the

error function surface in a direction opposite the direction vector (dk). Selection of an

upper bound for the interval entails a number of tradeoffs. A larger maximum value

would allow the algorithm to search over a greater interval for the optimal stepsize

(ak). This could allow the conjugate gradient algorithm to converge to the global

minimum more quickly by enabling it to step farther down the error function surface

at each iteration of the algorithm. It could also possibly provide more protection

against being trapped in a local minimum by allowing the line search algorithin to

search beyond the confines of a local minimum. A larger interval, however, requires

that a greater number of iterations be performed to reduce the interval of uncertainty

to the required degree. This final intervai ,. incertainty must be small so that

midpoint of the interval is reasonably close to the optimal stepsize value. It is this

midpoint that is the stepsize value ak that will be used b the conjugate gradient

:35

algorithm to update the weights and thresholds of the neural network. A larger final

interval of uncertainty increases the chances of a less than optimal choice for the final

stepsize. A balance must therefore be struck between the size of the initial interval of

uncertainty, the size of the final interval of uncertainty, and the number of iterations

to be performed.

Initial investigations were performed to determine the range of stepsize

values that were typical for various neural network applications. It was found that

the stepsize (ak) generally did not exceed a value of 10.0 and was typically less than

1.0. An initial interval of uncertainty of 10.0 was therefore used throughout remainder

of the thesis research.

In the course of determining the initial interval of uncertainty it was found

that the line search method would occasionally yield a final step size value (o) which

produced an error function value much greater than the previous iteration's value. It

was determined that this problem was a result of the error function surface not being

unimodal in the direction (dk) along which the algorithm searched for tile minimum.

If this second minimum was closer to one of the two evaluation points (,\., and Ilk)

than the true minimum, as shown in figure 3.5, then the algorithm would converge to

this second minimum. This would result in an error function value larger than when

the line search algorithm started. To remedy this problem, the initial interval of

uncertainty was shifted to the left so that the first point evaluated was for A0 = 0. If

the error function for the final stepsize value (0) was greater than the error function

value with a stepsize of zero, then a stepsize of zero was returned as the final stepsize

value (0k). This had the effect of resetting the conjugate gradient algorithm. A

stepsize of zero caused the algorithm to retain the same weights and thresholds for

the next iteration of the algorithm. As a result, the gradient (g.+1) at the next

iteration was identical to the previous gradient (g) and the two successive identical

36

gradients would produce a deflection coefficient (Ilk) equal to zero. This would reset

the direction vector (dk) to the value of the present gradient (gk) rather than the

weighted sum of previous gradients. This had the effect of reinitializing the conjugate

gradient method, but at a new starting point (hk) on the error function surface.

ak Ak Yk bk

Figure 3.5: Line profile of the error function surface

Having fixed the initial interval of uncertainty, the number of iterations of

the line search algorithni perforned during each iteration of the conljugate gradient

method was varied to determine al optimal number. Using sixteen itcrations, the

conjugate gradient algorithm was able to consistently reduce the value of the error

function. The value of the error function did not consistently drop when fewer than

sixteen iterations were used. Using equation 3.9 this resulted in a final interval of

uncertainty of 0.00626.

37

C. COMPUTER PROGRAM IMPLEMENTATION

1. Conjugate Gradient Algorithm

The conjugate gradient algorithm was implemented for a mu]iple input,

single output neural network using the C programming language. A flow chart show-

ing the basic functions that are performed by the program is shown in figure 3.6. The

user is prompted at the start of the program for the number of neurons in each stage

of the neural network, the number of iterations of the conjugate gradient algorithm

that should be performed, and the name of the input file that contains the training

data that the algorithm will use to adapt the weights and thresholds of the network.

The number of neurons allowed in the network is limited to a total of 50 and the

number of weights connecting the neurons is limited to 500. This maximum number

of neurons and weights was more than large enough for the various problems to which

the program was applied. The training data file consists of columns of data in which

each column is associated with an input to the neural network except for the the last

column. The last column is the desired output of the neural network. Each row is a

separate training data set. l'pon completion of the program three files are produced.

The first is a file that contains the final results. The first columni of the file is the

desired value and the second columni is the value that the neural network produced

using the final weights and thresholds of the network. If the algorithm has performed

a.s expected and reduced the error function to a small value, theni the two coluiiis of

data should be nearly identical. The second output file produced contains the final

weights and thresholds of the network. This file can then be used by any other pro-

gram which simulates the operation of a neural network with the same configuration

of neurons. The final file is produced only if the neural network has two inputs. Tile

file consists of a 21 x 21 matrix of neural network output values that were produced

by applying a sequence of twenty-one evenly spaced values betweeni 0.0 ajid 1.0 to

38

each of the two inputs. The resulting file can be i'sed to produce a three dimensional

mesh of the output surface of the neural network. Examples of the input screen,

output screen, and both the input and output files are contained in Appendix A. A

copy of the C program source code is contained in Appendix B.

2. Backpropagation Algorithm

In order to evaluate the conjugate gradient algorithm's performance, the

backpropagation method was also implemented. The basic flow chart for the back-

propagation method is shown in figure 3.7. Because of the similarity between the con-

jugate gradient method and the backpropagation methods, this required only a few

changes to the program that implemented the conjugate gradient algorithm. These

changes consisted of

* Replacing the stepsize value (ak) calculated by the Fibonacci line search with a
user specified constant referred to as the learning rate by the backpropagation
method.

* Replacing the deflection coefficient (/dk) which is calculated foi every iteration
of the algorithm with a user-specified constant referred to as the momentum
factor by the backpropagation method.

* Updating the weights and thresholds of the neural network after the application
of each training data set rather than upon completion of a complete pass through
the entire training data file.

The input and output files remain the same as those for the conjugate gradient version

of the program.

The following chapter compares the performance of the conjugate gradient

and backpropagation algorithms and also presents the results of several neural network

applications.

39

Get the training data and parameters

Initialize the network weights

Calculate the network output (x 3)

Calculate the gradient vector (g)

no End
Of
ata

L -±o yes
I Calculate the deflection coefficient (,3k)

Update the direction vector (dk)

Calculate the step distance (ak)
(Fibonacci line search)

Update the weight vector (hk)

110 Last
teration.

I Store the final results

I
SStore the final weights and thresholds

Calculate the network output matrix

C Stop

Figure 3.6: Conjugate gradient algorithm flowchart

40

Start

I Get the training data and parameters

F - Initialize the network weights

Calculate the network output (x3)

Calculate the gradient vector (gk)__

Update the direction vector (dk)4
Update the weight vector (hk)

110 Last

teration?

"(yes
Store the final results4

Store the final weights and thresholds

Calculate the network output matrix

C Stop

Figure 3.7: Backpropagation algorithm flowchart

41

IV. RESULTS

In this chapter, the results of the research conducted on neural networks using

the conjugate gradient method are presented. The chapter is divided into two parts.

The first concerns the performance of the conjugate gradient algorithm compared

to that of the backpropagation method. The second provides several examples of

neural network applications. Where possible, the performance of the neural network

is compared to its linear counterpart.

A. CONJUGATE GRADIENT ALGORITHM PERFORMANCE

1. Performance Measures

The rationale for implementing the conjugate gradient algorithm was to

develop an alternative to the backpropagation method that, would converge more

quickly to the optimal set of weights and thresholds for a given problem. The error

function (E) is a measure of whether the weights and thresholds of a neural network

are optimum whbin applied to a particular problem. The smaller the error function

value, the more nearly optimum the weights and thresholds are. Both algorithms

reduce the value of the error function by iteratively adapting the weights and thresh-

olds of the neural network. The rate at which the backpropagation and conjugate

gradient algorithms converge to the optimal set of weights and thresholds can be

measured using several methods. The simplest approach would be to determine the

number of iterations each algorithm requires to reduce the value of the error function

to a prescribed level. The number of iterations for each algorithm would thenm be

compared and the algorithm requiring fewer iterations would be considered to con-

verge more quickly. This approach does not, however, take into accouni the greater

42

computational complexity of the conjugate gradient method. A more accurate mea-

sure of performance for the purposes of comparison is the number of multiplications

performed by each algorithm. This measure better reflects the relative computational

requirements of the two algorithms. The number of multiplications performed by each

of the methods over one iteration is fixed. We can therefore calculate a multiplication

ratio of the two methods and then use this ratio in conjunction with the number of

iterations to compare their relative performance.

2. Calculation of the Multiplication Ratio

The number of multiplications performed by both the backpropagation

method and the conjugate gradient method over one iteration is a function of several

variables. These include the number of neurons and weights in the network. tile size

of the training data file used to train the network, and the number of iterations per-

formed by the Fibonacci line search method. Tables 4.1 and 4.2 show the number of

multiplications required by various functions of the conjugate gradient and backprop-

agation method, respectively. The tables also show the total number of times each

function is performed during a single iteration of the algorithm. The variable T is the

number of training data sets used to train the network, the variable P is the number

of weights and thresholds in the network, and R is the number of neurons in the

network. Table 4.1 figures reflect that the step size (ak) is calculated using sixteen

iterations of the Fibonacci line search algorithm. The total number of multiplications

(AI) performed by each of the alL rithms is therefore

A'cc; = T(20P + 37R + 17) + 21(P + R) + 35 (.1)

for the conjugate gradient method and

MBP = T(5P + 5R) (4.2)

43

TABLE 4.1: MULTIPLICATIONS - CONJUGATE GRADIENT
METHOD

Function Times Number of
Performed multiplies

Calculate network output 18T P + 2R
Calculate gradient vector T 2P + R
Calculate deflection coefficient 1 2P + 2R
Update direction vector 1 P + R
Calculate step distance 1 35
Update weight vector 18 P + R
Calculate error sum 17 Al

TABLE 4.2: MULTIPLICATIONS - BACKPROPAGATION METHOD

Function Times Number of
Performed multiplies

Calculate network output T P + 2R
Calculate gradient vector T 2P + R
Update direction vector T P + R
Update weight vector T P + R

44

for the backpropagation method. We can then derive the multiplication ratio by

dividing MCG by MBp to obtain

MC T(20P A- 37R + 17) + 21(P + R) + 35
MBp - T(5P + 5R)

Equation 4.3 can then be factored into four terms as shown below

17(R + 1' 21 35

RATIO == 4 + 5(P + R) + T + 5T(P + R) (4.4)

For the purposes of approximation, the last two terms of equation 4.4 can be elini-

inated since the number of training data sets used to train the neural network is

typically large. As the number of neurons in a network is increased, the number of

connections or weights in the network increases at a much greater rate. This happens

because each neuron in a given layer is connected to every neuron in the next layer

of the network. As a result, the second term of equation 4.3 steadily decreases as

the number of neurons is increased. The lower bound on the multiplication ratio is

therefore approximately four and the upper bound can be set at approximately five

for networks having more than just a few neurons.

3. Performance Results

The performance of the conjugate gradient method was compared to the

performance of the backpropagation method using two different training problems.

The first consisted of training the neural network to produce a binary output of either

one or zero depending on the inputs to the network. The second problem involved

training the neural netwoik to produce a specific value within the range of zero to

one for a given set of inputs to the network.

A plot of the normalized value error function versus the number of itera-

tions performed for the binary problem is pictured in Figure 4.1 for the backpropa-

gation algorithm and in Figure 4.2 for the conjugate gradient algorithm. Note the

45

difference in the horizontal scale of the two figures. The error function steadily de-

creased for the conjugate gradient method while the error function actually increased

for approximately the first 100 iterations of the backpropagation algorithm. Also

note that the error function's rate of change was much more even for the conjugate

gradient algorithm than for the backpropagation method.

In order to compare the relative performance of the two algorithms, the

multiplication ratio's upper bound of five was used. Pictured in Figure 4.3 is a

comparison of the two algorithms' convergence rates with respect to the approximate

number of multiplications performed by each algorithm. As can be seen, for the binary

case, the conjugate gradient method consistently outperformed the backpropagation

method for any given number of multiplications performed.

The results were even more apparent for the continuous output problem.

The backpropagation method was unable to significantly reduce the error function's

value for the first 500 iterations of the algorithm as is shown in Figure 4.4. The conju-

gate gradient method, however, steadily reduced the value of the error function value

after each iteration of the algorithm (Figure 4.5). Comparison of the convergence

rates of the two methods with respect to the number of multiplications required in

each case is shown in Figure 4.6. For any given number of multiplications the conju-

gate gradient method greatly outperformed the backpropagation method.

The conclusion from the two examples above is that the conjugate gradient

method performs as well or better than the backpropagation method with respect to

both the number of iterations and the number of multiplications required to reduce

the error function to a desired level. The conjugate gradient method therefore satisfies

one goal of this thesis which was to develop an alternative to the backpropagation

method that would converge more quickly to the optimal set of weights and thresholds

for any given problem.

46

1.2r

.........1......

0

0 500 1000

iterations

Figure 4.1: Binary problem - backpropagation

1.2TTT

0.6

0.2

01i
0 50 100 150 200

iterations

Figure 4.2: Binary problem - conjugate gradient

47

1.2

* 0.2
Backprop:

IConj Grad-- - -
0

0 5 10 15 20
multiplications (normalized)

Figure 4.3: Binary problemn - comparison

48

0 .1

0-

0500 1000

iterations

Figure 4.4: Continuous problem - backpropagation

0

0 50. 100 150 200

iterations

Figure 4.5: Continuous problem - conjugate gradient

Backprop:-
Coznj Grad:--

0 5 10 15 20

multiplications (normalized)

Figure 4.6: Continuous problemn - comnparison

50

B. NEURAL NETWORK APPLICATION RESULTS

Several simple applications were chosen to evaluate the performance of the con-

jugate gradient method vis-a-vis the backpropagation method. These applications

were also used to develop a better understanding of the potential signal processing

applications for the neural network. When possible, the neural network's performance

was compared to its linear counterpart.

1. A Classification Problem

The goal for this problem was to train a neural network to differentiate

between two classes of inputs. The two classes of inputs consisted of points which

fell either inside or outside of a circle with a diameter of 0.5 centered within in a

unit square as shown in Figure 4.7. This classification problem, although relatively

simple, is representative of one of the primary tasks to which neural networks have

been applied- pattern recognition and classification [Ref., 1:1)1). 66-67].

The points used to construct the training data file were evenly spaced 0.1

apart from zero to one for both the X0 and X1 coordinates as shown in Figure 4.7.

This produced a total of 121 points over the unit square. The training data file

was composed of 121 data sets, each set consisting of the coordinates for one of the

training points and a value representing the desired class to which the point belonged.

The desired value for a point falling inside the circle was a one. The desired value

for a point falling outside the circle was a zero. The conjugate gradient algorithm

was used to train a neural network which had two inputs, eight first layer neurons,

four second layer neurons, and one output neuron (a 2-8-4-1 configuration). After

100 iterations of the algorithm, the total squared error summed over the entire 121

training data sets was 6.26 x 102. The resulting output of the neural network as a

function of its inputs is pictured in Figure 4.3.

51

1.0
* 0 0 0 0 0 0 0 0

Xi 0.5 * 0 *0 0 00

ok -I S 0 $1

0 0 1.0
X0

Figure 4.7: Training data for the classification problem

The neural network produced output values ranging from 1.56 x 10- to

1.0 and was able to properly identify the class to which each of the training data

points belonged. The contour plot of the neural network output for a single contour

value of 0.5 is shown in Figure 4.9. The plot clearly shows that the conjugate gradient

algorithm was able to calculate a set of weights and thresholds for the neural network

that very closely approximates the desired result. A circular decision region was

formed that allowed the neural network to differentiate between points falling inside

the circle and points falling outside the circle. This is because a neural network, due

to its nonlinearity, has the ability to form arbitrarily complex decision regions.

This simple example clearly demonstrates the ability of a neural network

to produce a nonlinear mapping of a set of analog inputs to a single binary output

value. In this case, this nonlinear mapping was used to produce the two decision

regions pictured in Figure 4.9. For other applications, the formation of decision

regions may not be called for. Rather, the output of the network may have to be

continuously variable.

2. Nonlinear Time Series Prediction

The previous problem required the neural network to produce only a binary

output of one or zero. The second application was selected so that the conjugate

gradient algorithm's performance could be evaluated for the case of a continuously

variable range of desired output values. This type of application falls into a second

class of tasks for which the neural network can be applied-nonlinear mapping of a

set of analog inputs to an analog output value [Ref. l:p. 67]. It was decided to apply

the neural network to the problem of one-step prediction of a nonlinear time series.

One-step prediction is a fairly common application in digital signal processing. A

nonlinear time series was used since one-step prediction for a linear time series could

easily be satisfied using a linear filter rather than a neural network. Thl method

53

1.0

0.4

0.2

Figure 4.8: Neural network output versus input

1"!

0.8

0.6

0.4

0.2

0
0 0.5

Xo

Figure 4.9: Neural network output contour plot

54

used to perform the prediction is similar to that used by a linear predictor. The

next value in the series is predicted using the previous values of the series. The basic

configuration is pictured in Figure 4.10.

Predictor

Figure 4.10: Time series predictor

For a linear predictor the output of the predictor is merely a weighted, sum

of a given number of previous values of the series. The neural network. however, can

produce an output which is a nonlinear function of a given number of previous values.

The nonlinear time series used to train and evaluate the conjugate gradient algorithm

was produced using

x,+, = 4Bxn(1 - xz). (4.5)

This equation is referred to as the classic logistic or Feigenbaum map and has been

studied quite extensively because its simplicity and its application to chaos theory.

This iterated equation (equation 4.5) produces an ergodic, chaotic time series that is

bounded and quasi-periodic [Ref. 12:p. 10]. A training sequence of 100 samples was

generated using equation 4.5 with the variable B equal to 1.0. This sequence was

then used to adaptively calculate the optimal coefficients for a linear second order

prediction filter using a recursive least squares method. The linear predictor's results

55

are pictured in Figure 4.11. Only the first fifty samples of the sequence were plotted

so that the two curves on the graph could be better differentiated. It is obvious

from Figure 4.11 that the linear predictor was unable to accurately predict the next

value in the nonlinear series using the two previous values of the series. When the

difference between the the actual and predicted signals is plotted one can see that the

magnitude of the error is almost as great as the magnitude of the original signal (see

Figure 4.12). As was expected, the linear predictor performs poorly for a nonlinear

problem.

The same training sequence was then used by the conjugate gradient al-

gorithm to train a neural network with a 2-4-2-1 configuration. The network was

trained to predict the next value of the series based on the two previous values. Af-

ter 100 iterations, the sum of the squared errors over the 100 training data sets was

7.25 x 10- . This would equate to an average standard deviation from the actual sig-

nal of approximately 8.51 x 10- . The neural network's results are pictured in Figure

4.13. it is apparent that the neural network performed much better than the linear

predictor. The prediction error for the neural network is pictured in Figure 4.14. The

magnitude of the neural network's prediction error is much smaller than that for the

linear predictor. This error could also be reduced even further if additionai iterations

of the conjugate gradient were performed.

This example demonstrates that a neural network is quite capable of per-

forming nonlinear mapping of a set of analog inputs to anl analog OUt)Ut. The neural

network can also produce more accurate results than the linear approach when the

problem to be solved is nonlinear. It must be recognized, however, that although

the neural network produces more accurate results, it is much more compiltationally

complex than the linear approach to the problem.

56

0.8 I ' I

0.7-A

0,5 1 A

I 'I
' I I I

0.4 I

0.3 -. U Actual:

Predicted- ..
0.2I I , ,

0 10 20 :30 40 50

Figure 4.11: Linear predictor output and actual signal

0.4,,

0.2

o / Acul

-0.2 -

-0.4 'z0 10 20 30 40 50

Figure 4.12: Linear prediction error

5)7

0.8

0.7-

0.8-

0.5-

0.4-

0.3-
- Actual:

Predicted: - - - -
0.2-

0 10 20 30 40 50

Figure 4.13: Neural network predicted and actual signal

0.02

0.01

-0.01

-0.02 II

0 10 20 30 40 50

Figure 4.14: Neural network prediction error

58

3. Channel Equalization

One final example will serve to demonstrate the potential applications for

the neural network. The idea of using a neural network to perform channel equaliza-

tion for a nonminimum phase transmission channel was borrowed from Gibson, Siu,

and Cowan [Ref. 15]. The experimental results indicate that a neural network could

potentially provide superior performance to its linear counterpart when the channel

over which the digital data is transmitted is nonminimum phase.

a. Transmission Channel Model and Equalizer model

When digital data is transmitted, it frequently becomes distorted by

the channel over which it travels. This distortion can frequently be modeled using

a linear time invariant (LTI) system [Ref. S:p. 426]., The channel model, shown in

Figure 4.15, consists of the transfer function H(z) and a channel noise term ni. The

channel

(ni) ! Equalizer

Figure 4.15: Channel model and equalizer

transfer function of the channel is defined by a finite impulse response (FIR) equation

H(:) = ao + a]Z -1 +"" + ak: -1. (4.6)

The chanmel moibe term n, is typically assumed to be zero meai. additive white

gaussian noise. The purpose of a channel equalizer also showm ihi Figure 4.15 is to

reverse the distorting effects of the uhannel and to recover the original signal (a',) using

59

m samples of the received signal, yi, yi-,... , yi-m+i. If we assume, for a moment,

that the noise term (ni) is zero, then the received signal y, is merely a weighted sum

of the present and past values of the original signal xi. This can be expressed as

k

Y= E- , aixi- (4.7)

where aj are the k + 1 coefficients associated with the channel transfer function H(z).

For a binary signal(4-1), therefore, the received signal y, can assume only one of 2k

possible values. If we then try to estimate the original signal xi using an m sample

vector [yi, yi-1,... , Yi-m+1], we can only form a fixed number of permutations of the

received signal vector. Each received signal vector [yi, yi-i,... , Y-m+u] belongs to

either the set of vectors corresponding to a transmitted binary one (+1) or the set of

vectors corresponding to a transmitted binary zero (-1). The channel equalizer pro-

duces an estimate of the transmitted signal x; by determining which set the received

signal vector belongs to. It has been shown that a linear transversal equalizer can

perform such an operation if the channel transfer function 1(z) is minimum phase

[Ref. 15:p. 1184]., If the channel transfer function is not minimum phase, then the two

received vector sets are not linearly separable and a linear equalizer cannot accurately

estimate xi based on the received data vector set [yi, yi- , y-,,,+]- If a delay, d.

is introduced in the calculation of xi, such that the at the i"' iteration the equalizer

estimatbs the original signal Xi-d, then accurate estimation of the original signal can

be achieved [Ref. 15:p. 1184]. This value for d however, may not be known, or may

vary with time. The result is that a linear transversal equalizer, even with a delay,

may not be able to satisfactorily equalize a nonminimum phase channel.

b. A Nonminimum Phase Channel Equalizer

The ability of a neural network to form arbitrary decision regionb,

demonstrated in Chapter II, could possibly remedy this problem. To investigate this

60

concept, the first order nonminimum phase transfer function (H(z) = 0.5 + z-1) was

used to evaluate the performance of both a neural network and a linear transversal

equalizer. The possible values for y, using this transfer function are: +1.5, +0.5, -0.5,

and -1.5. A two input neural network and two input linear transversal equalizer were

used since the channel's transfer function was only first order, and this allowed a

graphical analysis of the problem. The eight possible combinations If y, and yi-1 are

shown in Figure 4.16. The symbol x indicates that the original signal xi had a value

of -1 and the symbol o indicates that xi was equal to +1. Notice that the symbols

are intermixed such that no single line can be drawn th tt will completely separate the

two classes of symbols. This is what makes the nonminimum phase case intractable

for the linear transversal equalizer. If the noise term, ni, is now incorporated into

the problem, the result is as shown in Figure 4.17 for a signal-to-noise ratio (SNR)

of 10 dB. The number of possible values for yz becomes infinite. but the points are

distributed about the original eight points shown in Figure 4.16. Tile coefficients

for a first order linear transversal equalizer were calculated by applying a recursive

least squares (RLS) algorithm to the set of 500 consecutive values of y, pictured in

Figure 4.17. The values for yi were generated by using a random sequence of +1 and

-1 for xi. applying this binary sequence to the transfer function given above, and

adding a normally distributed noise term with a stai-,dard deviation equivalent to a

signal-to-noise ratio of 10 dB. The linear transversal equalizer's two decision regions

are pictured in Figure 4.18. The region that is shaded with dots is the area for which

the linear transversal equalizer produced an estimate of +1 for x, and the unshaded

region where the equalizer produced an estimate of -1 for xi. Note that the best that

the linear equalizer could do was to dcfine two decision regions such that three of the

four possible points fell within the proper region. The salie 500 value data set was

then used to train a neural network having a 2-6--4 -1 configuration. The decision

61

regions formed by the neural network after 100 iterations of the conjugate gradient

algorithm are pictured in Figure 4.19. The neural network, because of it6 ability

to account for the nonlinearities, was able to form two separate decision regions for

each of the two possible values for xi. The four decision regions properly encompass

the eight possible points associated with Yi and yi-1. As a result, the total number

of errors produced over the 500 value training set dropped from 151 for the linear

equalizer to 65 for the neural network. The neural network's ability to form more

complex decision regions allowed it to more accurately perform equalization when the

transfer function was nonminimum phase.

c. A Nonminimum Phase Channel Equalizer Using a Delay

It was stated earlier that introduction of a delay d could allow the

linear equalizer to more accurately perform its equalization function. Pictured in

Figure 4.20 are the eight possible points associated with y, and Yi-I for a delay of

one sample (i.e., the estimate of xi- based on the samples y, and yi-1). The two

classes of points are no longer intermixed as they were for the case of no delay. A set

of coefficients for the linear equalizer can therefore be calculated that will properly

separate the two sets of points. With noise added, however, the sets of points begin to

intermix as shown in Figure 4.21 for a signal-to-noise ratio of 10 dB. The separation

of the two classes becomes more difficult particularly for the linear equalizer which

can only use a single line to define the decision boundary. The coefficients for the

linear equalizer were again calculated using the RLS algorithm and the 500 values

for yi pictured in Figure 4.21. The resulting decision regions are shown in Figure

4.22. Comparison of the two decision regions with the original training data (Figure

4.21) indicates that the linear equalizer was unable to define a single line that could

separate all the points into their proper regions. The linear equalizer)roduced a

total of 19 errors over the 500 values of the training data set. The same training data

62

2

x 0

1

x 0

X 00 x

-2
-2 -1 0 1 2

Yi

Figure 4.16: Possible comnbinations of yj and y-

xx)O
1 X(X 0

x 0x O
x cb S 8 0 x 0

v4x.X 04 8 0

r4 ~ ~ 0 0 xx X X

4 x x ID 00

x xx x 0 0b
X) x

-2 - 0 1 0

Xyi0
Figure ~) 4.7 Posil obInatios of 00ady. it os de

x 63

2

x 0

x 0

.. .0x 0

-2

-2 -1 0 1 2

Yi

Figure 4.18: Linear equalizer decision regions

x 0

0-0>)-.

xx

x xi=

- 2. . . : xi + 1
-2 -1 0 1 2

Yi

Figure 4.19: Neural network decision regions

6.1

set was then used to train a neural network with a 2-6-4-1 configuration using the

conjugate gradient algorithm. After twenty iterations, the neural network produ ced

the two decision regions pictured in Figure 4.23. The boundary between the two

decision regions is no longer a straight line but is shaped to take into account the

distribution of points caused by the introduction of noise. The neural network only

produced a total of 3 errors over the 500 value training set.

d. A Performance Comparison

The results from the two above examples would tend to indicate that

a neural network can produce superior results to the linear equalizer both when

a delay is introduced and when a delay is not introduced. In order to confirm this

result, the performance of both the linear transversal equalizer and the neural network

were evaluated for various signal-to-noise ratios. The measure of performance for

the test was the average bit error probability. The four signal-to-noise ratios: 5.0

dB, 10 dB, 20 dB, and 25 dB were used to generate four different sets of training

sequences. Each sequence was generated using a different signal-to-noise ratio. Both

the linear equalizer and the neural network were then trained using these four 500

value sequences for yi. After calculating the coefficients for the linear equalizer and

the weights and thresholds for the neural network the bit error performance of each

type equalizer was calculated by passing the same 100,000 bit sequence through each

equalizer and counting the number of times the equalizer produced an error. The

results for the case where no delay was used is shown in Figure 4.24. As was expected,

the bit error probability for the linear equalizer with no delay was extremely poor. The

bit error probability for the neural network steadily dropped as the magnitude of the

noise fell. The lowest of the three curves shown in Figure 4.24 reflects the performance

of the neural network at the various sigi.al-to-noise ratios after having been trained

using the 10 dB SNR training data set. Its performance is equal to or bet ter Ihan t lie

6.5

0 0

x x

V4

o00

-20

-2 -1 0 1 2

Yi

Figure 4.20: Possible combinations of yj and yi-I (with delay)

2 06 o000g,8

0 00

x 0~ 0 Z1 t
x 0 0

'-4(XX~ 071

0 1 0 0 0 00
x)*X x x o 0x

X 0§x xxx0

0c 9 0 0

-2 - 0 1 2-
)OC % ;y0

Figure~~~ 4.21:* Posil Xob.ain ofy n iwt os de wt

(ii

2

o 0

1

x x

0 +

-2
-2 -1 0 1 2

Yi

Figure 4.22: Linear equalizer (with delay) decision regions

2

0 o

..........

x x

.2 0

0-2 -1 0 1 2

yi

Figure 4.23: Neural network (with delay) decision regions

6i7

neural networks trained and evaluated for a specific SNR. This is because the lower

SNR forced the conjugate gradient algorithrm to produce a set of decision boundaries

that, were more nearly optimal. This res .,en more apparent for the case when

a delay was introduced in the equalizatioii problem (Figure 4.25). The same method

was used as described above, except that both the linear equalizer and neural network

produced an estimate of xi-1, rather than xi, based on the received signals yi and

yi-l • Once again the neural network performed better than the linear equalizer and

the neural network trained using 10 dB data performed the best.

One final comparison can be made between the neural network and

the linear transversal equalizer. This is a comparison of neural network without delay

versus the linear equalizer with delay. This comparison is shown in Figure 4.26. Also

shown is the neural network's performance with a delay. The neural network without

delay did not perform as well as the linear equalizer for low signal-to-noise ratios.

As the magnitude of the noise was reduced, however, the performance of the two

approaches became comparable. The neural network with delay, however, was better

than any of the approaches.

e. Channel Equalizer Conclusions

The performance of both a linear transversal equalizer and a neural

network were evaluated with respect to their ability to accurately equalize a nonmin-

imum phase digital data channel. It was found that a linear transversal equalizer was

unable to accurately estimate the original signal because of the channel's nonmini-

mum phase characteristic. The neural network, because of its ability to form arbitrary

boundaries, did not suffer from this problem. Introduction of a delay allowed both

the linear transversal equalizer and the neural network to improve their performance.

Finally, a neural network using no delay showed a comparable performance to a linear

transversal filter with a delay for high signal-to-noise ratios. The ability of the neural

68

0 1 I
0

WD,p

N -Z *.

-4 w\ (..........

~~Linear Eq" "
Neural Eq:----
N eural Eq(M0d)t . .

- 5\

5 10 15 20 25

SNR (dB)
Figure 4.24: Equalizer performance (no delay)

0

~Linear Eq:Neural
Eq:F Neural Eq(1 O dla):y)

-1 ---'..'--.. i......................0 -

o 2 N.ra

0 - 3 i M .., 1 1
-.o -2.

-4_
4

.......... :! \

5.5

5 4 ''

5 10 15 20 25

SNR (dB)

Figure 4.25: Equalizer performance (with delay)

69

network to perforin equalization without introduction of a (lchy coul1d prove iiseful,

particularly if the required delay is unknown or varies with time.

Linear Eq(w/delay)i
bD Neural Eq(1OdD)(w/o delay): - - - -

_ :.... Neural Eq(IOdB)(w/delmy): - - - -I

54

..-3 fi

....-4....

5 10' 15 20 25

SNR (d0)

Figure 4.26: Equalizer perfori-ance - all methods

70

V. CONCLUSIONS AND
RECOMMENDATIONS

A. CONCLUSIONS

The first objective of this thesis research was to develop an alternative to the

backpropagation method for calculating the optimal set of weights and thresholds for a

neural network. The results presented in Chapter IV demonstrated that the conjugate

gradient algorithm developed for this thesis was more computationally efficient than

the well knowr backpropagation method.

The second objective of this research was to develop a better understanding of

the relationship between the structure of a neural network and its ability to perform

input-to-output mapping. A graphical approach was used to analyze the internal

representations of the neural network. The results of this analysis were presented in

Chapter II.

The final objective of this thesis research was to evaluate the performance of a

neural network for several different signal processing applications. The first example

presented demonstrated the ability of a neural network to perormn clas-.ification. The

second example. nonlinear time series prediction, compared the performance of a

neural network to its linear equivalent, and showed that the neural network produced

superior results. The final example illustrated the performance differences between a

neural network and a linear approach to nonminimum phase channel equalization.

These applications demonstrated that the nonlinear properties of a neural net-

work frequently allow the neural network to perform functions more effectively than

its linear counterpart. This is particularly the true when the problem itself is nonlin-

ear. It must be recognized. ho%ever, that, there is a cost. to this increa.sed functionality.

71

Calculation of the proper weights and thresholds for a given problem is much more

computationally complex. The computational complexity associated with the use of

a neural network must therefore be balanced with the accuracy desired when decid-

ing whether to use a neural network rather than a linear approach to solve a given

problem.

B. FUTURE RESEARCH

In the course of this thesis research, several other areas were ider, .ified that

merit additional study.

1. Transfer Function Selection

The sigmoid function used for this research produced ain output that ranged

between 0 and 1. Other transfer functions could be investigated that prod t ce a bipolar

output. "_his could prove to be more ,seful for typical signal processing applications.

One such transfir function that could be evaluated is the hyperbolic tangent function

tanh() e - (5.1)
e- + e- 1 + e2-

Thib nonlinear function produces a value which ranges between ±1 and is continuously

differentiable for all values of z.

Neural Network Dynamic Range

The performance of a neural network having a great ,r dyn anic range could

be investigated. The dynamic range of the neural network could be expanded by

allowing adaptation of the output weight w3. It could also be accomplished by using

a linear transfer function for the single neuron in output layer of the network. The

output of the network would then be a linear combination of he weighted outputs

from the second layer of network. This is approach taken by Lapedce awd Farber in

their research [lef. II.

72

3. Internal Representations

This thesis made no attempt to analyze the internal representations used

by the neural network to produce the desired outputs for a given set of inputs. Re-

search could be conducted to try to determine exactly what type of functions the

individual neurons in the network perform. This could provide further insight into

the relationship between the structure of a neural network and its ability to perform

a particular task.

4. Analysis of the Weights and Thresholds

Research could be performed to determine if there is any analytical signif-

icance to the final weight and threshold values for a neural network.

73

APPENDIX A: PROGRAM OUTPUT SCREEN
AND DATA FILES

A. EXAMPLE OUTPUT SCREEN

** Conjugate Gradient Algorithm **

What is the name of the training data file? circ.dat
How many inputs to the neural network? 2
How many 1st layer neurons? 4
How many 2nd layer neurons? 2
There will be only one 3rd layer neuron.
How many passes thru the training data set? 2

Initial Error sum: 40.2786

Performing iteration number 1
Beta value: 0
Alpha value: 0.10958
Error sum: 17.3579

Performing iteration number 2
Beta value: 0.00366825
Alpha value: 3.79148

Error sum: 17.3564

Final error sum: 17.3557

Where do you want the results stored? circ.res
** Calculating final results **

Where do you want the final weight/theta values stored? circ.wgt
** Storing final weight/theta values **

Where do you want the map matrix stored? circ.map
** Calculating map of network **

74

B. EXAMPLE INPUT DATA FILE

4.0000e-001 4.000e-001 1.0000e+000
4.0000e-001 6.0000e-001 1.0000e+000
4.0000e-001 6.0000e-001 1.0000e 000
4.0000e-001 7.0000e-001 1.0000e000
4.0000e-001 8.0000e-001 0.0000e+000
4.0000,-O01 9.0000e-001 0.0000e.000
4.0000e-001 1.0000e+000 0.0000e+000

5.0000e-001 0.0000e-000 0.0000e+000
5.00008-001 1.0000e-001 0.0000e+000
S.0000e-001 2.0000e-001 0.0000e+000
5.0000e-001 3.00OOe-001 1.0000e+000
5.00OOe-001 4.0000e-001 1.0000e+000

S.00OOe-001 6.0000e-001 1.0000e+000
5.0000e-001 6.0000e-001 1.0000e+000

5.0000e-001 7.0000e-001 1.0000e+000

5.0000e-001 8.0000e-001 0.0000+000

5.0000e-00l 9.OOe-001 0.0000e000

5.0000e-O01 1.0000e+000 0.0000e000

6.0000e-001 0.0000e4000 0.0000e+000

6.0000e-001 1.00OOe-001 0.0000e+000

6.0000e-001 2.0000e-001 0.0000e+000

6.00OOe-001 3.0000e-001 1.0000e+000

6.OOOOe-00l 4.0000e-001 1.0000e4000
6.0000e-001 5.00OOe-001 1.0000e+000

Input 1 Input 2 Desired output

75

C. EXAMPLE RESULTS OUTPUT DATA FILE

1.000000e+000 1.733739e-001
1.000000e+000 1.738492e-001
1.000000e000 1.743229e-001
1.000000e+000 1.747937e-001
0.000000e+000 1.752599e-001
0 .000000e+000 1.757203e-001
0.000000e+000 1.761736e-001
0.000000.+000 1.714368e-001
0.000000e+000 1.718988e-001
0O.000000e+000 1.723659e-001
1.000000e+000 1.728365e-001
1.000000e+000 1.733092e-001
1.000000,4000 1.737825e-001
1.000000e+000 1.742548e-001
1.000000e+000 1.747247e-001
0.000000s000 1.751906e-001
0.000000e+000 1.756512e-001
0.O00000eO00 1.761052e-001
0.000000,+000 1.713874e-001
0.O00000e+000 1.7184S2e-001
0.000000e+000 1.723086e-001
1.000000e+000 1,727760e-001
1.000000e+000 1.732460e-001
1.000000e+000 1.737171e-001

Desired output Actual output

7(6

D. EXAMPLE FINAL WEIGHTS OUTPUT DATA FILE

2 4 2 } Number of neurons in each layer

1.023357 0.621861 -0.194039 0.288292 1Input weights [wo]
-0.092301 -0.595949 0.007433 -0.795105

-0.061310 -0.031015 0.059272 0.010853 Input thresholds [0o]

-0.796225 -0.522201
-0.618687 -0.103397 1st layer weights [wl
0. 513663 0.325973

-0.831033 0.906917

-0.279913 0.139071 1st layer thresholds [1)

0.262880 2nd layer weights [W2]

-0.542745

1.344298 2nd layer threshold [02]

1.000000 Output weight [W3]

77

* APPENDIX B: PROGRAM SOURCE CODE
LISTING

* include <stdio .h>
#include <stdlib .h>
*include (math.h>
*include <float .h>

/* This program calculates the weights and thresholds for a
/* feedforward multilayer neural network using the conjugate *
/* gradient optimization method.

1* FUNCTION DECLARATIONS *

mnt get..info(char filenameE] ,int num..nodefl);
mnt get..data(char filenameE) ,double ts..data[] ,int num-inputs);
mnt init-.weights (double *weight-.ptr ,imt num-.node[]);
mnt init-.thetas(double *theta.ptr,imt num..node[]);
void adapt-.network(double weightE] ,double theta[] ,int num-.nodellj

mnt num..weights,int num-theta,double data-.array[],
mnt array..size,int max-iteration);

double fire..neurons(double *activity.ptr, double *weight..ptr,
double *theta-ptr,int num-.nodeOl);

void calc..gradient(double activity C],double weight[],
double theta-.gradient[]),double gradient C],
mnt num-nodeE] ,int numweights,int numtheta);

double calc-beta(double oldgradient C],double old-theta-gradientEl,
double new-.gradient C],double new-.theta..gradient C],
int nwn..inputs,int num-.theta);

void update..direction(double gradientC] ,double directionC] ,double beta,
mnt num..intputs);

void update..weights(double weight[C),double alpha,double direction[C],
mnt num..inputs);

double calc..alpha(double weight C],double direction C],double theta[C],
double theta-direction[] ,double activityDC,
double data-array C),imt array-size ,imt null-node[C)
mnt num-weights,int num..theta);

void load..values(double *input-ptr,double *output..ptr,imt total-.num);
mnt fibon~int n);

78

void write-.result(double weightl,double thetafl.int numn.nodefl,
double ts..dataE),int set-.size);

void map..network(double weight EJ,double thetaE),int num-.node 0);
void store-w.eights (double weight 0 ,double *theta..ptr,int numn.node [));

MAIN PROGRAM

main()

char filename[l4);
int max..iteration,num.node[£5),nwn..weights. set-.size ,num-.theta;
double ts-.data[3000) ,weight [400) ,theta[50J;

printfQ"\n ** Conjugate Gradient Algorithm **\n ;
max-iteration = get-.info(filename,num.node);
set-.size = get-.data(filename,ts.data,num..node[0]);
if (set-.size==X
exit (0)

num-..eights=init-weights(weight ,num..node);
num-.theta--init-.thetas (theta, num..node);
adapt-.network(weight ,theta,num-node ,num..weights ,num.theta,

ts-.data,set..size,max-.iteration);
write..result(weight ,theta,num..node,ts.data,set-size);
store-.weights(weight ,theta,num-.node);
if (num-.node [0] == 2

Inap-.network(weight ,theta,num-.node);
I

exit(0);

FUNCTION GET-.INFO *

int get-info(char filenameE) ,imt num-.node0l)

int max-.iteration;

printf("\n What is the name of the training data file?")
flushallO);
gets(filenane);
printf("\Vi How many inputs to the neural network?")
scanfQ'Y.2hd" ,&num..node [0]);
printfQ"\n How many 1st layer neurons?")
scanf("%2hd"',&num.node[1]);

79

printf("\n How many 2nd layer neurons?)
scanf ("%2hd" ,&num..node (2));
printfC"\n There will be only one 3rd layer neuron. 11);
num-.node[3J - 1;
nuzn-node (4) - 1;
printfQ'\n\n How many passes thru the training data set? "1);
scanfC"V.4d" ,kmax.iteration);
return(max.iteration);

FUNCTION GET-.DATA *

mnt get..data(char filenameij double ts.data[EJ'int num..inputs)

FILE *stream;
int i,num..read;

num-.read z 0;
if ((stream = fopen(kfilename[O),"r")) != NULL){
for (i0O;(i < 3000W&
(fscanf (stream, "%lg" ,ts-.data + i) >0); i++)

fclose(stream);
if (Ci%(num-inputs+i)) != 0){
printf("\n\n ** Improper number of input data elements*")
num-.read = 0;

else{
num..read = i/(num..inputs+l);

else
printf("\n\n ** Could not find the specified file*")

I
return(num.read);

FUNCTION INIT..WEIGHTS

mnt init-.weights(double *weight-.ptr,int num-.nodeOl)

*define MAX-.VAL 16384.0
mnt num-..eights,i;

srand(l);

num-.weights = 0;
for (iz0;i<3;i++){

num-.weights *= num-.node Fi)*nwii.node [i1);

for (i=0;i(num.node~o)*num.node[1I);i*+){
*veight-.ptr.H. - (1.0 - (rando/AX-.VAL));

for (iO; i<(num-.node[1) *nun-nodo [2]) ;i++){
*voight..ptr. = (1.0 - (rando/MAX..VAL));

for (i0; i<(num-.node[2) *nuin node[31);i,+){
*weight-.ptr+. = (1.0 - Crando/MAXVAL));

I
*weight..ptr = 1.0;
num..weights += 1;
return(num-weights);

FUNCTION INIT.THETAS

int init.thetas(double *theta..ptr,int num-.node[)

int num-theta,i;

num.theta = num-.node [1) num-.node [2) 4nunt.node [3);
f or (=0; i<num-theta; i.+){

*theta-.ptr.+ = 0.0;
I
return (num-.theta);

1* FUNCTION ADAPT..NETWORK

void adapt..network(double weightOl,double theta[J.,int num-nodeO ,
int num-..eights ,int num-.theta,double data.array(0,
int array-.size,int max-.iteration)

int iteration,i,j,set-.num;
double activity [50] ,gradient [400] ,direction[400J ,gradient-.sum[400];
double actual..output ,desired-output, alpha,beta,old-gradient-mag;
double theta-.gradient [50] ,theta.sum[50] ,theta.direction [50);
double old-gradient-.suin[50] .old..theta-srn [50],error *errorsrn;
double *array-.ptr;

for (iteration=0 ;iteration<max-.iteration; iteration++){

81

for (i-O; i<num-ueights ;i+.){
gradient.sum[i) = 0.0;

I}
for (i=O;i<num-.theta; i++){

theta-.sum[i) z 0.0;

errorsum=0.0;
array..ptr = data-.array;
for (set~num=O;set-numnarray.size;set.num++){

for (iPO;i<num.node [0) ;i.+){
activity[iJ = *array..ptr++;

I
desired-.output = *array-.ptr4+;
actual.output-fire-.neurons (activity ,veight ~theta,num-.node);
error =actual-output - desired-.output;
error *error;
gradient Enum-w.eights-1] - (actual-output - desired..output)*

actual-output;
calc..gradient(activity ,weight ,theta..gradient ,gradient ,num-.node,

num-w.eights ,nuxn..theta);
for (i0;i<(num-w.eights-1) ;i++){

gradient.sum[i] += gradient[i];

for (i=O; i~num.theta; i++){
theta.sum~i] += theta..gradient[i];

errorsum += error;
I
printf(" Error sum: %lg \n",errorsum);
if (iteration==A

beta = 0.0;

I
else{

beta - calc..beta(old-gradient.sum,old.theta.sun,gradient.sum,
theta-.sum, (num-.weights-1) ,num..theta);

I
for (j0;j<(num-.weights-1) ;j++){

old-gradient.sum[j] = gradient-.sum[j);
I
for (jZO;j<num..theta;j.+){

old.tketa-.suzn[j] = theta..sum[j];

I
printf("\n performing iteration number %d \n",(iteration+1);
printf(" Beta value: Zig \n",beta);
update..direction(gradient..sum,diraction,beta, (num..weights-1));

82

update.direction(theta-.sum ,theta..direction ,beta,nwn..theta);
alpha-calc-alpha(veight ,direction,theta,theta..direction,aciiy
data..array,array-.sizenun.node,nwu..veights,
num-.theta);

printf(" Alpha value: ?.lg \n",alpha);
update-.weights (weight ,alpha,direction, (num-..eights-1));
update..weight&;(theta,alpha,theta-.direction,num.theta);

errorsum - 0.0;
array.ptr - data-.array;
for (set..n."mu;set-.numcarray..size; uet..nu+.)

for (iz0;inum-.node[0) ;i++){
activity Ei) *array..ptr++;

I
desired-.output a*array.ptr++;
actual-outputfire-.neurons(activity,weight ,theta,num..node);
error =actual-.output - desired-.output;
error *error;
errorsum *= error;

printf("\n Final error sum: ?.lg \n",errorsum);
return;

1* FUNCTION FIRE-.NEURONS *

dokble fire-.neurons(double *activity-.ptr,double *weight..ptr,
double *theta..ptr,int num-.nodefl)

mnt layer.num,neuron-.num,j;
double rnp,*input-.ptr, *output-ptr;

input-.ptr =activity-.ptr;
output..ptr =activity-.ptr + num.node[01;

/* Feed input forward thru each layer of the network *
f or (layer..numO; layer.num<3 ;layer-num++) {

for (neuron-.num=0 ;neuron..num <num..node Elayer.nuxn+1); neuron..num++) {
temp =0.0;
for (j0O;j < num-.node(layer-.numj ;j++){

temp - (*weight..ptr+.)*(input-.ptr~j]);

temp 4= *theta-ptr++;
*output..ptr+4 = 1.01(1 .0+exp(temp));

8:3

input..ptr += num..node [layer.num];

temp - (*input..ptr) * (*veight..ptr);
return(temp);

1* FUNCTION CALC-.GRADIENT *

void calc..gradient(double activity 0 ,double weight0l,
double theta..gradientE] ,double gradient[],
int num..node 0 ,int num...eights,int xwm..theta)

int layer..nwn,i,j ,offset;
double *veight-.ptr ,*gradient..ptr, *result.gradient-.ptr;
double *output-.acty..ptr,*input-.acty-.pt,temp,*theta.ptr;

weight.ptr - kweight [num-w.eights-1];
gradient..ptr a Igradient~num.weights-1);
result-.gradient-.ptr = gradient-.ptr - 1;
output..acty..ptr =&activity [0) + (num..node [0] 4num-.node [1]+nuxn.node [2]);
input..aczy..ptr =output..acty..ptr - 1;
theta..ptr = &theta..gradient[nun..theta-1);

for (layer.num = 2;layer-.num>-1;layer-.num--){
for (j=0;jnum.node~layer.num + 1) ;j++){

temp = 0.0;
offset = 0;
for (i=O;i<num..node[layer.num+2) ;i+*){

temp += (*weight-.ptr) * (*gradient-.ptr);
weight-.ptr - num..node [layer.num+ 1];
gradient..ptr -=num..node[layer.nuzn+1);

I
offset =(num-.node [layer.nume2] *num..node £layer.nun+ 1]) -1;
weight..ptr += offset;
gradient.ptr *= offset;
temp *= (1.0 - (*output-.acty.ptr--));
for (iO;inum.node~layer-num] ;i**){

(*result..gradient..ptr--) = temp * (*input-.acty..ptr--);

*theta-.ptr-- =(-temp);

inpnt..acty..ptr += num..node Elayer..num);

input..acty-.ptr - nuni-node~layer..num);

return;

84

/* FUNCTION UPDATE-.WEIGHTS *

void update..veights(double weight 0 ,double alpha, double direction[],
mnt nwu..inputs)

mnt 1;

for (izO; i~nwn.inputs ;i++){
weight~i) 4- alpha*direction[i);

return;

/* FUNCTION CALC-.BETA *

double calc..beta(double old..gradient0 ,double old..theta..gradientfl,
double new-.gradient C),double nev..theta-.gradient 0.
int num..inputs,int num..theta)

f
int i;
double beta,templ,temp2;

temipt = 0.0;
temp2 = 0.0;
for (i=O;inum.inputs ;i+

tempi +- ((new-.gradient Ci)-old..gradient Ci])*new-.gradient i]);
temp2 += (old..gradient~i] * old..gradient~i));

for (i=0;i<num-.theta;i++){
tempt +- ((new-.theta-.gradient Ci)-old..theta..gradient[i) *

new-.theta.gradient i));
temp2 += (old..theta-.gradient~i) old..theta.gradient~i));

beta a tempi/temp2;
if (beta < 0.0)(
beta - 0.0;

I
return (beta);

/* FUNCTION UPDATE-.DIRECTION

void update..direction(double gradient[], double direztionc],

85

double beta, mnt num..inputs)

int i;

for (iO; i<num..inputs; i++) {
direction[i) * beta;
direction~i) - gradient[i];

return;

1* FUNCTION CALC..ALPHA *

double calc-.alpha(double weight 0 ,double directiono) ,double thetaOf,
double theta..directionE] ,double activity[],
double data..arrayfl,int array..size,int num..nodefl,
int nuzn...eights,int num.thata)

double a,b,lamda,mu,lamda-.result ,mu..result ,desired-.result ,epsilon;
double actual..result ,test..weight £500) ,test..theta[5o , *array.ptr;
int i ,k,set..num,max.steps;

a = 0.0;
b =10.0;
max-.steps = 16;
epsilon = 0.001;
lamda = a+((b-a)*fibon(max-.steps-2)/fibon(max.steps));
mu =a+((b-a)*fibon~max-steps-1)/fibon(max.steps));
a -=lamda;
b -=landa;
mu -=laxda;

lamda = 0.0;
load-.values (weight ,test..weight ,num..weights);
load-.values (theta~test.theta,num.theta);
update.weights(test.weight ,lamda,direction, (num-.weights-1));
update.weights(test.theta,laida,theta.direction,num-.theta);
laznda-.result = 0.0;
array..ptr = data-.array;
for (set..nwnO;set.num<array-size;set-nuzn++){

for (i=0;i<num.nodelo] ;i++){
activity[iJ = *array-.ptr44;
I
desired-.result = *array-.ptr4.+;
actual..result=fire..neurons(activity ,test..weight ,test-.theta,

num-.node);

86

actual-.result -~desired-..result;

actual-result *actual-rxesult;

lamda-.result += actual-result;

load-values (weight ,test-.wei.ght ,num..weights);
load-.values (theta,test.theta,nn..theta);
update..weightstest-w.eight ,mu,direction, (nuxn..weights-1));
updal.e..weights (test-.theta,mu,theta..direction,num.theta);
mu...esult = 0.0;'
array-.ptr = data-.array;
for (set-.num=O;set-.numarray..size ;set..num++){

for (Ii=O;i<nun..node[O) ;i++){
activity~i) *array..ptr++;

I
desired-.result =*array-.ptr++;
actual..resultfire.neurons(activity,test-weight ,test-.theta,

nwn..node);
actual-.result -=desired-.result;
actual-.result *actual .result;
mu-.result 4= actual-.result;

for Ckl;(k<(max-.steps-1))&&(b>0.0);k++){
if (lamda.result > mu..result){

a =lamda;
lamda = mu;
lamda.result = mu-.result;
mu =((b-a)/fibon(max..steps-k));

mu *=fibon(max-steps-k-1);
mu += a;

load-.values (weight ,test..weight,num-.weights);
load-.values (theta ,test-.theta ,num-.theta);

-update..weights(test-.weight ,mu,direction, (num-.weights-i));
update-.weights(test..theta,mu,theta..direction ,num.theta);
mu.result = 0.0;
array..ptr = data-.array;
for (set..num=0;set..nuzn<array..size ;set..nume+){

for (i0O;i<num.node[0] ;i44){
activity Fi] *array.ptr+.;

I
desired-.result =*array-.ptr++;
actual..resutfire..neurons(activity ,test..wei-ght ,test..theta,

num-.node);
actual-rtsuit -desired-.result;

actual-.result *actual-.result;
mu..resul. += actualresult;

87

elWe
b =mu;

mu =lamda;

nLu.result = lanida-.result;
lamda =((b-a)/fibon(max-.steps-k));
lamda *fibon(max..steps-k-2);

lamda *= a;
load..values (weight ,test...eight ,num..veights);
load-.values (theta,test.theta,num..theta);
update..veights(test...eight,lamda,direction, (num-.weights-1));
updato..veights(test-.theta,lamda,theta.direction,nui..theta);
lamda..result = 0.0;
array..ptr = data-.array;
f or (set.num0 ; set..num<array.size ;set-.num+e){

for (iO;inum.node[0] ;i+*){
activity[i) *:trray-.ptr++;

desired-.result =*array-.ptr++;
actual-result=fre-.neurons(activity ,test..weight ,test-.theta,

num..node);
actual-result -=desired-result;

actual-result *=actual-.result;

it kb>.
mu =lanida + epsilon;
load..values (weight ,test-.weight ,num..weights);
load..values (theta,test.theta ,num..theta);
update.weights(test..iaight ,mu,direction, (num..weights-1));
update-..eights (test..theta ,mu ,theta..direction,num..theta);
mu-.result =0.0;
array..ptr =data-.array;
f or (set.num=0;set-num<array.size ;set..num++){

for (i=O;inum.node[0] ;i++){
activity [i] = *array..ptr4+;

I
desired-.result = *array-.ptr+4;
actual-.resultfire..neurons (activity ,test-veight ,test..theta,

numni.zode);
actual-.result -=desired-.result;

actual-.result *actual-result;

mu-.result += actua2-result;

if (lamda-.result > mu-.result){
if ((1limda+b)> 0.0)(

returnC((lamda+b)/2.O);
I
e).se{

return(O.O);

elsef
if C(lamda+a)> O.O){

return((lamda+a)/2.O);

else{
return(O.);

FUCINLODVLE

vod} a-ausdul iptprdul otu-t~n oa-ut
f

return OO)

1* ~FUNCTION L OALN

it i; flf2k

f or(0 < otlnu; 2)f)

returnl)

for (k=1;k<n;k4+){
fO = fl + f2;

f2 = fl;
fl = fO;

return CfC);

1* FUNCTION WRITE-.RESULT *

void write-.result(double weightl,double thetafl,int num..noder],
doueble ts..datafl,int set-.size)

FILE *fileptr;
char f namne [14];
int i,set-.num;
double desired-.result ,result ,activity [50] ,*array..ptr;

printf("\n\n Where do you want the results stored?")
flushallkO;
gets(&fname[0]);
printf("\n ** Calculating final results ** \n't);

fileptr = fopen(&fname[0],"u");
array..ptr = ts-.data;
for Cset..num=O;set-.num<set-.size; set-.num++){

for (i=0;i<num..node[0] ;i+'){

activity[iJ *array-.ptr++;
I
desired-.result =*array-.ptr++;
result = fire..neurons(activity,weight,theta,num.node);
fprintf(fileptr," Ve %e \n" ,desired-result ,result);

fclose(fileptr);
return;

FUNCTION MAP-.NETWORK *

void map-.network(double weight [],double thetaL] ,int nuin..node[])

mnt row,col;
double rsl,in 1t, input2 ,activity[5O];
FILE *fileptr;
chax fnameL13);

90

printf("\n\n Where do you want the map matrix stored?")
flushall();
gets (kfname [0]);
printfQ'\n ** Calculating map of network **\n");
fileptr a fopen(kfname[O) ,"w");
input 1ainput2=0.0;
for (row=0 ;row<21 ;row+4){

for (col=O;col<21;col++){
activity [0) inputl;
activity [1] =input2;
result=fire.neurons(activity ,weight gtheta,numn.node);
fprintf~fileptr," YXell,result);
inputi += 0.05;

fprintf(fileptr,1"\n");
inputi = 0.0;
input2 4= 0.05;

fclose(fileptr);
return;

FUNCTION STORE-WEIGHTS

void store..weights(double weig'&t[],double *theta-.ptr mnt num-node[])

int i,j,k;
double *weight-.ptrl ,*weight-.ptr2;
char fname[13);
FILE *fileptr;

printf("\n\n Whe~re do you want the final weight/theta values stored?")
f lushallO0;
gets (&f name [0]);
printf("\n ** Storing final weight/theta values **\n");
f ileptr = f open(&f iiame [0J , "w");
for (i=0;i<3;i++){

fprintf(fileptr,"%4d" ,num..node [ii);

I
fprintf (fileptr ,\n)
weight..ptr2 = weight;
for (i0O;i<3;i++){

weight..ptri weight..ptr2;
for (j0;j<num-.node[i] ;j'++){

91

weight-.ptrl weight-.ptr2 + j
for (kusO;k<num..node[i+i) ;k++){

weight-.ptrl +- num.node~i);

fprintt(fileptr," \n");

weight..ptr2 +- (num..node~i)*num-.node~i+1));
for (juO;j<num-.node[i+1) ;j++){

fprintf(fileptr, "V10 .61f 1, *theta..ptr++);
I

fprintf(fileptr,"%.1O.61f \n",*weight-.ptr2);
fclose(fileptr);
return;

REFERENCES

1. DARPA, DARPA Neural Network Study, AFCEA International Press, Fairfax, VA,
1988.

2. James L. McClelland and David E. Rumelhart, Explorations in Parallel Distributed
Processing, The MIT Press, Cambridge, MA, 1988.

3. Marvin Minsky and Seymour Papert, Perceptrons, The MIT Press, Cambridge, MA,
1969.

4. Richard P. Lippmann, "An introduction to computing with neural nets." IEEE ASSP
Magazine, Vol. 4, No. 2, pp. 4-22, April, 1987.

5. Philip D. Wasserman and Tom Schwartz, "Neural Networks, Part 1: W'hat are they
and why is everybody so interested in them now?," IEEE Expert Magazine, Vol. 2,
No. 4. pp. 10-12. Winter, 1987.

6. Samuel D. Stearns. "Fundamentals of adaptive signal processing." in Advanced Tbpics
in Signal Processing, Jae S. Lira and Alan V. Oppenheim, eds., pp. 246-288, Prentice
Hall, Englewood Cliffs, NJ, 1988.

7. Simon Haykim, Introduction to Adaptive Filters, Macmillan Publishing Company,
New York, NY, 1984.

8. Sophocles J. Orfanidis, Optimum Signal Processing, Ma-millan Publishing Company,
New York, NY, 1988.

9. David E. Rumelhart, James L. McClelland and the PDP Research Group,"Leariling
internal representations by error propagation," in Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition. Vol 1: Foundations. David E. Rumel-
hart and James L. McClelland. eds.. pp. 318-362. The MIT Press. Cambridge, MA.
1988.

10. G.0.Lorentz. Approximation of Functions, 2d ed., Chelsea Publishing Company, New
York, NY, 1986.

11. Alan Lapedes and Robert Farber,"How neural networks woik,'" Report LA-UR-88-
418, Los Alamos National Laboratory, Los Alamos, NM. Januaiy 1988.

12. Alan Lapedes and Robert Farber,"Nonlinear signal processing using neural networks:
prediction and system modeling." Report LA- UR-87-2662. Los Alamos National
Laboratory, Los Alamos, NM, July 1987.

13. Mokhtar S. Bazaraa and C. M. Shetty. Nonlinear Programming - Theory and Algo-
rithms, John Wiley & Sons. New York, NY, 1979.

14. David G. Luenberger. Linear and Nonlinear Progirimming, 2d ed.. Addison-Wesley
Fublishing Company, Reading. MA, 1984.

93

15. Gavin J. Gibson, Sammy Siu. and F. N. Cowan,"Multilayer perceptron structures
applied to adaptive equalizers for data communications," Proc. of the International
Conf. on Acoustics, Speech, and Signal Processing, pp. 1183-11813, IEEE Press, New:
York, Pub. No. 011-2673- 2, 1989.

94

INITIAL DISTRIBUTION LIST

No. of Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Code 62
Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey. California 93943-5000

4. Superintendent. Naval Postgraduate School 3
Attn: Professor M. Tuminala. (ode 62Tu
Naval Postgraduate School
Monterey, California 93943-5000

5. Superintendent. Naval Postgraduate School
Attn: Professor C. W. Therrien, Code 62Ti
Naval Postgraduate School
Monterey. California 93943-5000

6. Dr. R. Madan (Code 1114)
Office of Naval Research
800 North Quincy Street
Arl;ngton, Virginia 22217-5000

7. Superintendent. Naval Postgraduate School
Attn: Professor R. Hippenstiel. Code 62Hi
Naval Postgraduate School
Monterey. California 93943-5000

95

8. Professor Will Gersch
Dept. of Information and Computer Sciences
University of Hawaii
Honolulu, Hawaii 96822

9. CPT Mark D. Baehre 4
730 Casanova Avenue # 15
Monterey, California 93943-5000

96

